- 1 Operational Hydrological Forecasting during the IPHEx-IOP Campaign – - 2 Meet the Challenge - 3 Jing Tao¹, Di Wu^{2,3}, Jonathan Gourley⁴, Sara Q. Zhang^{2,5}, Wade Crow⁶, Christa - 4 Peters-Lidard⁷, Ana P. Barros^{1*} - 5 1. Dept. of Civil and Environmental Engineering, Duke University, Durham, NC - 6 2. NASA/GSFC Mesoscale Atmospheric Processes Laboratory, Greenbelt, MD - 7 3. Science Systems and Applications, Inc., Lanham, MD - 8 4. NOAA/National Severe Storms Laboratory, Norman, OK - 9 5. Science Applications International Corporation, McLean, VA - 6. USDA-ARS, Hydrology and Remote Sensing Laboratory, Beltsville, MD - 7. NASA/GSFC Hydrological Sciences Laboratory, Greenbelt, MD - 12 *Corresponding Author: - 13 Dr. Ana P. Barros - 14 E-mail: <u>barros@duke.edu</u> - 15 Phone: +1 919 660 5539 #### 16 **Abstract** 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 hours, significant errors of over- and, or underprediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: 1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; 2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and 3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15hrs was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware, configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins. ## **Keywords:** - 52 Integrated Precipitation and Hydrology Experiment (IPHEx); Operational Flood Forecasts; - 93 Quantitative Precipitation Estimate (QPE); Quantitative Precipitation Forecast(QPF); Data - Assimilation; Duke Coupled surface-groundwater Hydrology Model (DCHM). #### 1. Introduction 55 56 Floods are the most ubiquitous natural hazard, and flashfloods in particular remain a 57 leading cause of natural hazard deaths in the US (NRC, 2005). Due to rapid flow responses (≤6 58 hours) at small spatial scales and large uncertainties associated with all hydrometeorological and 59 hydrological processes involved in the forecasting chain, flashflood prediction remains a grand 60 challenge in operational hydrology (Collier, 2007), including Quantitative Precipitation 61 Estimates (QPEs) (Ciach et al., 2007; Gourley and Vieux, 2005; Kirstetter et al., 2012; Tao and 62 Barros, 2013; Vasiloff et al., 2007; Zoccatelli et al., 2010), Quantitative Precipitation Forecasts 63 (QPFs) (Amengual et al., 2009; Cuo et al., 2011; Davolio et al., 2013; Dietrich et al., 2009; Jaun 64 and Ahrens, 2009; Mascaro et al., 2010; Rabuffetti et al., 2008; Rossa et al., 2011; Zappa et al., 65 2010), highly non-linear model representations of hydrological process (Garambois et al., 2013; 66 Garcia-Pintado et al., 2009; Zappa et al., 2011), and probability-based decision rules (Coccia and 67 Todini, 2011; Dietrich et al., 2009; Hersbach, 2000) or threshold-based (either for rainfall or discharge level) warning criteria (Demargne et al., 2009; Martina et al., 2008; Norbiato et al., 68 69 2008; Rabuffetti and Barbero, 2005; Welles et al., 2007) as well. The predictability of 70 flashfloods is particularly challenging in ungauged/poorly gauged and remote basins (Moore et 71 al., 2006; Norbiato et al., 2008; Reed et al., 2007; Tao and Barros, 2013; Versini et al., 2014) and 72 in mountainous regions where other geo-hazards such as landslides (e.g. debris flows) are often 73 associated with heavy rainfall (Band et al., 2012; Casadel et al., 2003; Liao et al., 2011; Tao and 74 Barros, 2014a; Wooten et al., 2008). 75 Operational hydrological forecasting and nowcasting for flashflood warning is stipulated 76 on three tenets (Cloke and Pappenberger, 2009; Cuo et al., 2011; Droegemeier et al., 2000; Hapuarachchi et al., 2011; Liu et al., 2012; Pagano et al., 2014; Vrugt et al., 2006): 1) 77 availability of accurate QPFs with adequate lead times for effective warning and emergency response; 2) availability of near real-time comprehensive observing systems (a variety of data and observing systems, hereafter referred to as data support including ground- and satellite-based QPEs, raingauge observations, and river discharge observations; and 3) data assimilation systems merge and integrate available observations (i.e. discharge, satellite-based soil moisture, etc.) into hydrologic models to improve initial conditions for flood forecasting using physically-based distributed hydrologic models. Here, we briefly review each element and propose strategies to improve the predictability of flashfloods in regions of complex terrain in the context of the operational hydrological forecasting testbed implemented in the Southern Appalachians for the Integrated Precipitation and Hydrology Experiment (IPHEx) campaign (Barros et al., 2014). The use of physically-based and fully-distributed hydrologic models for flood forecasting poses additional challenges on account of high nonlinearity of rainfall-runoff response in space and time, further compounded by surface-groundwater interactions (Pagano et al., 2014; Werner et al., 2009), which is also examined here with the Duke Coupled surfacegroundwater Hydrology Model (DCHM). 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1) QPFs – Over recent years, ensemble prediction systems (EPS) for ensemble streamflow prediction (ESP) have become increasingly ubiquituous in flood forecast operations (Cloke and Pappenberger, 2009; Schaake et al., 2007), including the EFAS (European Flood Alert System, Europe) (Alfieri et al., 2014; Bartholmes et al., 2009; Pappenberger et al., 2015; Thielen et al., 2009), the operational HEPS (Hydrometeorological Ensemble Prediction System, Switzerland) (Addor et al., 2011), and many others (De Jongh et al., 2012; Hsiao et al., 2013; Nester et al., 2012; Pappenberger et al., 2015; Taramasso et al., 2005; Verbunt et al., 2007; Zappa et al., 2010). In the United States, the NWS's Hydrologic Ensemble Forecast Service (HEFS), a part of the Advanced Hydrologic Prediction Service (AHPS) (Connelly et al., 1999; Hogue et al., 2000; McEnery et al., 2005), operationally provides ensemble flow forecasts using ensemble mean QPFs from multiple NWP models for flood risk management and other waterrelated needs (Demargne et al., 2014). However, NWP-based QPFs have long been found inadequate in terms of rainfall intensity and variability, with cumulative rainfall amounts that dominate forecast errors and uncertainty, especially for small to medium size basins and in mountainous regions (Amengual et al., 2008; Cuo et al., 2011; Ebert, 2001; Jasper et al., 2002; Lu et al., 2010; Pappenberger et al., 2005; Xuan et al., 2009). In addition, a gap exists among meteorological operational practices for QPF and hydrological needs in terms of inconsistent spatial and temporal resolution, approaches to bias correction and model output statistics (MOS), and distinct points of view regarding validation and uncertainty (Demeritt et al., 2013; Pappenberger et al., 2008; Shrestha et al., 2013). One advantage of the IPHEx operational hydrological forecasting testbed is the seamless transfer of NWP QPF to the hydrological model due to careful a priori planning and integration of the NU-WRF (NASA-Unified Weather Research and Forecasting) and DCHM model requirements. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 2) Data Support - Many campaigns, projects, and community workshops have been devoted to improving the state-of-the-science and the
state-of-the-practice of flood forecasting (Amengual et al., 2008; Benoit et al., 2003; Davolio et al., 2009; Rotach et al., 2012; Schaake et al., 2007; Zappa et al., 2008). Often, however, access to observing systems and data delivery infrastructure, that is the data support, is lacking or remiss in terms of spatial and temporal sampling density and extent, data quality and latency (Pagano et al., (2014). The IPHEx testbed was implemented in an environment with unique data support: 1) an extended observation period (EOP) from October 2013 through October 2014 including the deployment of a science-grade raingauge network of 60 stations (in place since 2007), half of which are equipped with multiple raingauge platforms (during the IPHEx EOP, 2013-2014), in addition to the fixed regional observing system including a disdrometer network consisting of twenty separate clusters, and two mobile profiling facilities including MRRs (Micro Rain Radar); and 2) an Intense Observing Period (IOP) from May-June of 2014 (IPHEx-IOP) focusing on 4D mapping of precipitation structure during which NASA's NPOL S-band scanning dual-polarization radar, the dualfrequency Ka-Ku, dual polarimetric, Doppler radar (D3R), four additional MRRs, and the NOAA X-band dual polarized (NOXP) radar were deployed in addition to the long-term fixed instrumentation (Barros et al. 2014). Like-minded field campaigns, such as HyMeX (Hydrological cycle in the Mediterranean Experiments)(Drobinski et al., 2014; Ducrocq et al., 2014; Ferretti et al., 2014) and IFLOODS (Iowa Flood Studies) (Petersen and Krajewski, 2013), focused on improving QPE for flood forecasting. The real-time ensemble hydrological forecasting were conducted during the Special Observing Period of HyMex paying special attention to uncertainties associated with QPF and its propagating along the hydrometeorological chain and meanwhile advocating the consideration of uncertainties associated with initial soil moisture and hydrological models as well¹(Vincendon et al., 2014). During the IPHEx-IOP, all the data from deployed instruments, along with real-time discharge observations and the operational radar-based QPE products (i.e. NSSL Q3 and NCEP/EMC Stage IV; see Section 2.2.2. for detailed description) were assembled together for operational hydrological forecasting for the first time, and for synthesis and analysis a posteriori. 3) Data Assimilation – Even with the "perfect" hydrologic model and an "optimal" combination of QPFs, QPEs and other data support, flood predictability depends heavily on the - 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 ¹ http://presentations.copernicus.org/EMS2014-461_presentation.pdf realistic representation of initial hydrological conditions (Berthet et al., 2009; Li et al., 2009; Pagano et al., 2014). Data assimilation has proven an effective technique to reduce error and uncertainty in initial conditions (as well as accounting for model errors) in flood forecasting (Castaings et al., 2009; Komma et al., 2008; Madsen and Skotner, 2005; Noh et al., 2014; Randrianasolo et al., 2014; Salamon and Feyen, 2009; Schaake et al., 2007; Vrugt et al., 2006; Wanders et al., 2014; among others), and in particular by assimilating available discharge observations into hydrologic models (Bloschl et al., 2008; Clark et al., 2008; Lee et al., 2011; Li et al., 2015; Li et al., 2014; Rakovec et al., 2012; Seo et al., 2003). However, the application of data assimilation techniques to fully-distributed hydrologic models is still relatively rare due to high nonlinearity and the large number of hydrological states (number of degrees of freedom) involved (Lee et al., 2011; McLaughlin, 2002; Xie and Zhang, 2010), and the complex implementation that requires correctly representing tempo-spatial uncertainty in forcing, model parameters and structures, and observations as well (Clark et al., 2008; Crow and Reichle, 2008; Crow and Van Loon, 2006; Flores et al., 2010; Noh et al., 2014; Ryu et al., 2009). Consequently, a small number of studies are reported in the literature for real-world events (many are synthetic studies), and even fewer for realistic operational flood forecasting (Liu et al., 2012; Rakovec et al., 2015; Randrianasolo et al., 2014). In this work, the impact of coupling the DCHM with a river discharge DAS on the quality of both streamflow hindcasts and forecasts was examined in the post-IOP phase of IPHEx. DAS experiments were conducted for different watersheds by assimilating the discharge observations at the basin outlet using various techniques including the EnKF (Ensemble Kalman Filter) (Evensen, 1994; Evensen, 2003), the fixed-lag EnKS (Ensemble Kalman Smoother) (Evensen and van Leeuwen, 2000) and asynchronous version of EnKF (AEnKF) (Rakovec et al., 2015; Sakov et al., 2010). The testbed performance sensitivity 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 to the DAS configuration with regard to length of assimilation time windows (TW) and assimilation frequency (AF) was also investigated for different basins. This manuscript first describes the operational hydrological forecast activities during the IPHEx-IOP in Section 2, and summarizes the real-time operational results during the campaign in Section 3. Post-IOP analysis and synthesis, including the impact of implementation of data-assimilation are presented in Section 4 with a focus on demonstrating the utility and added value of the proposed strategies for improving flood forecasting in regions of complex terrain. ## 2. Operational Hydrological Forecast Implementation #### 2.1 Workflow of the Daily Operational Forecast IPHEx was the first Ground Validation field campaign conducted in support of the Global Precipitation Measurement (GPM) satellite mission after the launch of the core satellite (Barros et al. 2014). The main objective was to characterize warm season orographic precipitation regimes, the relationships among precipitation regimes and hydrologic processes, and to investigate operational flashflood predictability in regions of complex terrain. The study region is centered in the Southern Appalachians and spans the Piedmont and Coastal Plain regions of North Carolina (Figure 1), with a focus on 12 headwater basins in the Southern Appalachian Mountains (SAM) with drainage areas ranging from 71km² to 520 km² (Table 1). The operational hydrological forecasting testbed during the IPHEx-IOP was conducted collaboratively by Duke University (Duke) and NASA GSFC (Goddard Space Flight Center) to issue 24-hour forecasts daily starting at 12:00 UTC for each one of the 12 headwater basins. In practice, latency in the operational environment was constrained by computational resources and the rates of data transfer from weather prediction at GSFC to hydrological prediction at Duke, and thus the actual forecast lead time did not exceed six hours during the IOP. 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 Figure 2 depicts the operational workflow at Duke University to produce the daily hydrological forecasts and hindcasts during the IPHEx-IOP (Barros et al. 2014). Specifically, 24hr forecasts provided by the NU-WRF model at GSFC were delivered to Duke daily around 8AM EDT. The forecast fields were then projected into the IPHEx grid system (UTM17N) at 1km spatial resolution, interpolated to 5-min time-steps, and then converted into the format required by the input interface of DCHM. Multiple QPEs including Stage IV and Q3 for the previous day were downloaded and processed on a daily basis to produce streamflow hindcasts and provide updated initial conditions for the present day forecast. The hindcast results were evaluated for the 12 forecast points using previous day discharge observations downloaded daily from the USGS (United States Geological Survey) online data portal. In addition, the discharge observations at the end of the previous day were nudged into the DCHM as the initial discharge for the current day forecast, and the initial flow rates in channel pixels within each basin were adjusted proportionally to the ratio of estimated streamflow to the observation at basin outlet. The operational modeling system was implemented using MPICH2 (Message Passing Interface) so that the operational forecast results, including streamflow forecasts for the present day and the streamflow hindcasts for the previous day, could be produced every day before 3PM EDT. Note the operational system here was designed as such to mimic the timeline and overall framework of the operational forecasting system at the National Weather Service River Forecast Centers (RFCs), but actual public forecasts were not issued although it could be and results were posted online at iphex.pratt.duke.edu. The ultimate goal of this study is to enhance the hydrological forecasting skills through various strategies with minimum manual supervision and rescue as needed in realistic operational systems. 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 213 214 #### 2.2 Hydrometeorological Forcing Fields ### 2.2.1 Quantitative Precipitation Forecasts (QPFs) and other atmospheric forecasts During the IPHEx-IOP, the NU-WRF operationally provided high-resolution 2D forecasts of atmospheric forcing to drive the DCHM, including QPFs, air temperature at 2m, air pressure at 2m, specific humidity at 2m, and wind speed at 10m, incoming shortwave radiation and incoming longwave radiation at surface. The NU-WRF was implemented with 60 vertical layers and three horizontal domains at resolutions at 9km (domain 1), 3km (domain 2), 1km (domain 3) and 30sec temporal resolution. The model precipitation and atmospheric forcing fields were output at 1km resolution and 5min intervals. Figure 3 shows the three horizontal nested grids implemented in NU-WRF and the IPHEx domain. The NU-WRF physics configuration include the Goddard
4-ice Microphysics scheme, the Grell-Devenyi ensemble cumulus scheme, the Goddard Radiation schemes, the MYJ (Mellor–Yamada–Janjic) planetary boundary layer scheme, the Noah surface scheme and the Eta surface layer scheme. The output from the GFS (Global Forecast System) model every six hours at 0.5° resolution were used as initial and boundary conditions for the NU-WRF forecasts. More information about the NU-WRF can be found in (Matsui et al., 2014; Peters-Lidard et al., 2015; Shi et al., 2014; Zaitchik et al., 2013). #### 2.2.2 Quantitative Precipitation Estimates (QPEs) During the campaign, two conventional ground-radar QPEs were used for operational hindcasts, namely Stage IV and Q3 data. An experimental ground-radar based QPE derived from the NOAA NSSL (National Severe Storms Laboratory) X-band dual-Polarized Mobile Radar (NOXP), and a satellite-based QPE, i.e. the NASA Integrated Multi-satellitE Retrievals for GPM (IMERG), were also utilized for case studies after the IPHEx IOP. During the IOP, the operational QPEs (i.e. Stage IV and Q3) for the previous day were downloaded first, and then were (re-) projected to the IPHEx reference gridding system (i.e. UTM17 at WGS84). Q3 QPEs were resampled to the IPHEx common grid at 1km using the nearest neighboring method. Stage IV data were downscaled to 1km using a transient multi-fractal downscaling method (Nogueira and Barros, 2014). Details about each QPE are provided below. a) Stage IV (Operational Radar-based QPE) - NCEP/EMC (Environmental Modeling Center) Stage IV data is a national multi-sensor 4km gridded hourly precipitation analysis with very short latency (about 1hour) (Lin and Mitchell, 2005). The Stage IV product is constantly updated with new analyses from the RFCs (River Forecast Centers), and the final product is available with a latency of 12~18 hours. b) Q3 (Operational Radar-based QPE) - The Q3 or MRMS (Multi-Radar/Multi-Sensor) product provided by the National Mosaic and Multi-sensor QPE (NMQ) system at NSSL is a real-time nation-wide seamless QPE product at very high spatial (~1 km) and temporal (2 min) resolution which ingests rain gauge observations and hourly analyses of RAP (Rapid Refresh model) on the basis of 3D volume scan data from Weather Surveillance Radar-1988 Doppler (WSR-88D) network (Zhang et al., 2014). During the IPHEx-IOP, the hourly radar-based product with bias correction was operationally used for hindcasts. The 2-min radar-alone products without gauge correction were also obtained after the campaign and used for analysis. The Q3 is a real-time product, and thus its latency is on the order of minutes. c) NOXP (Experimental Radar-based QPE) - The NOXP radar was deployed in the Pigeon River Basin (shown in Figure 1) during the IPHEx-IOP (Barros et al. 2014). The radar was installed at intermediate elevation (1176m) in the inner region, and operated with scanning frequency of about 5 minutes and multiple sweeping elevation angles (from 0.5 to 8 degree), which allows an unimpeded view for low-level across most of the inner basin to avoid terrain blockage and overshooting, which are severe problems impeding the applications of conventional weather radars in topographically complex terrain. Details about the NOXP radar can be found in Palmer et al. (2009). Hybrid gridded NOXP data were produced by choosing the lowest elevation angle without terrain blocking for each azimuth. The processed NOXP data were gridded into UTM17 directly at the DCHM simulation resolution (i.e. 250m×250m) from the radar-scanning spherical polar coordinate system. The algorithm components used in the NOXP data processing (i.e. calibration, ground clutter removal, attenuation correction, DSD retrieval, and QPEs, etc.) are described in (Anagnostou et al., 2013; Kalogiros et al., 2013a; Kalogiros et al., 2013b; Kalogiros et al., 2014). d) IMERG (Experimental Satellite-based QPE) - The IMERG Level 3 half-hour precipitation products at 0.1° x 0.1° (Final Run) were used for the case studies in the post-IOP phase of the campaign. The IMERG system integrates prior multi-satellite algorithms from TMPA (TRMM Multi-Satellite Precipitation Analysis), CMORPH-KF (CPC Morphing – Kalman Filter), and PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Cloud Classification System) (Huffman, 2015). Specific details regarding the rainfall retrieval algorithm and the data (post)processing are described in the Algorithm Theoretical Basis Document of IMERG (Huffman et al., 2014). Similar to StageIV, the IMERG data were also downscaled to 1km using the fractal downscaling method (Nogueira and Barros, 2014a and 2015). ### 2.2.3 Soil properties and historical hydrometeorological datasets In preparation for the operational hydrological forecasting testbed, long-term historical hydrometeorological datasets (atmospheric forcing and landscape attributes) necessary to implement and operate hydrologic models in the Southeast US (shown in Figure 1a) at the IPHEx reference resolution (hourly time-step, 1km×1km in UTM17N at WGS84) were developed for a 7-year period (2007-2013), and are available on http://iphex.pratt.duke.edu. The atmospheric forcing fields were downscaled from the North American Regional Reanalysis (NARR) product with cloudiness-, elevation- and topographic correction (Tao and Barros, 2014c). The landscape attributes were constructed from MODIS land products by removing cloud contamination (Tao and Barros, 2014b). Soil properties, including saturated hydraulic conductivity, porosity, field capacity and wilting point, were extracted from the State Soil Geographic (STATSGO) dataset². Historical landscape attributes in the same day-of-year in a wet year (2009) were used throughout the entire IPHEx-IOP period due to the lack of updated MODIS products. ² http://iphex.pratt.duke.edu/DataCenter/Time-invariantDatasets/SoilParameters #### 2.3 Duke Coupled surface-groundwater Hydrology Model (DCHM) 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 The DCHM, implemented at 250m×250m spatial and 5min temporal resolution, was the hydrologic model used for the operational hydrologic forecasting testbed. The DCHM is a physically-based and fully-distributed hydrologic model solving water and energy balance equations with coupled surface-subsurface interactions. Earlier studies using evolving versions of the DCHM (formerly referred to as LSEBM, 1D-LSHM, and 3D-LSHM) were described in various publications (Barros, 1995; Devonec and Barros, 2002; Garcia-Quijano and Barros, 2005; Gebremichael and Barros, 2006; Kang et al., 2013; 2012a; 2012b; Tao and Barros, 2014a; 2013; Yildiz and Barros, 2005; 2007; 2009) with demonstrated success particularly in flash-flood and landslide prediction at event scale in the Pigeon River Basin (one of the core basins in this study) (Tao and Barros, 2014a; Tao and Barros, 2013). Before the IPHEx-IOP, the DCHM was reinitialized and spun up (repeating simulations several times until internal equilibrium is reached) for five weeks (April 1-May 5, 2014) driven by the ensemble of fractally downscaled QPEs generated from the Stage IV product and historical hydrometeorological datasets in the same month of a wet year (2009). Spin-up was conducted repeatedly until the flow difference between the last and the current iteration is very small, i.e. the hydrologic system reaches internal equilibrium, resulting in small stable simulated streamflow residuals. The final hydrologic states at the end of the spin-up period were used as the initial conditions for the operational forecasts starting on May 5. Note there was no tuning of initial conditions for the daily forecasts past May 5, and the model is uncalibrated. The spatial and temporal resolutions of standard IPHEx products including NU-WRF forecasts are respectively 1km and hourly. All the forcing data were spatially interpolated to 250m using the nearest neighbour method, and landscape attributes data were linearly temporally interpolated to 5min resolution. During the IOP, operational hourly QPEs (i.e. StageIV and Q3) and 30min satellite-based QPE data (i.e. IMERG) were uniformly interpolated to 5min assuming constant rainfall intensity, thus generally underestimating heavy rainfall intensities and overestimating light rainfall (Nogueira and Barros, 2015) at times. NOXP QPEs (rainfall rate) at radar scanning temporal resolution were averaged to 5min. Temporal interpolation of atmospheric forcing fields including QPFs provided by NU-WRF was unnecessary since all the fields were available at 5min resolution. # 3. Operational Results during the IPHEx-IOP #### 3.1 Overview of the Operational Hydrologic Forecasting Testbed The overall forecast and hindcast results for selected headwater basins during the IPHEx-IOP period (May 1 – June 15, 2014) are summarized in Figure 4. The QPFs provided by NU-WRF overestimate rainfall for all twelve basins during the campaign, consequently overestimating streamflow but capturing well peak times for all basins. There were no missed events, though several false alarms resulted from incorrect placement of rainfall cells in NU-WRF QPFs (e.g. Basin 1 and 10). The overestimation error is particularly large for the major IOP event on May 15 in all basins, and for the secondary event on June 12/13 in the headwater catchments of the Upper Catawba and Upper Yadkin (i.e. Basins 8-12, not shown here but can be found on IPHEx website³). Some extraordinary flow forecasts (false alarms) are shown for May 30 in Basin 1, and on June 1 in Basins 4 and 5 which are attributed to the incorrect placement of rain cells predicted in NU-WRF. _ ³ http://iphex.pratt.duke.edu/ The hindcast results (here only results using Q3/MRMS are shown due to similarity with results using Stage IV) show generally improved performance compared to forecasts for most of the basins except Basin 10 (Fig. 5) and two small headwater
catchments in the Upper Yadkin (i.e. Basins11 and 12, not shown) for the May 15 event. The good forecast performance on May 15 in Basin10 demonstrates the importance of the accuracy of the QPF forcing: given high quality QPFs, the hydrologic forecasts using the uncalibrated DCHM are very good such as on May 15; by contrast, note the false alarm on June 13 in the same basin given overestimated QPFs compared with observations on June 12. It should be stressed that the initial streamflow in each basin for the current day forecast was simply based on the discharge observation at the basin outlet at the time of forecast, i.e. discharge observations were nudged into the DCHM for each basin outlet and proportionally estimated flow redistributed through the basin's channel network according to the ratio of predicted to the observed streamflow at the basin outlet (as described earlier, see workflow in Fig. 2). However, nudging discharge observations at the basin outlet directly into the model could only affect the model states directly tied to river water stage and for a certain (short) period of time as antecedent soil moisture conditions control rainfall-runoff response, as illustrated by the shift in the streamflow curve at the beginning of each day in Figure 4. This problem can be alleviated by assimilating discharge observations into the DCHM to systematically update/improve soil moisture within the basin. This is further discussed in section 4.3. #### 3.2 Case study with multiple QPEs The largest region-wide rainfall event on May 15 with large streamflow response in all 12 basins during the IPHEx-IOP is examined closely. A second event, a localized rainfall event on June 12 which caused streamflow response in Basin 2 next day (June 13), is not shown here. Figure 5 shows daily rainfall accumulations on May 15 from multiple QPEs (including Stage IV, Q3 and also IMERG) and QPFs from NU-WRF. It can be seen from the figure that Stage IV and Q3 show very similar storm patterns although Q3 patters exhibit sharper spatial variability due to higher resolution. The IMERG data exhibit spatial variability consistent with Stage IV and Q3 at coarse resolution (~10km; e.g. Nogueira and Barros, 2015), but much heavier rainfall for the event in question. That is, the overestimation is preserved by the downscaled product. Moreover, the spatial patterns of NU-WRF QPF do not agree with the QPEs with much larger rainfall accumulations compared to Stage IV and Q3, thus causing significant streamflow overestimation as pointed out earlier. Hindcast results using Stage IV are larger than those using Q3 except for Basins 3 and 5, where both products are similar (Figure 5). This is illustrated in Figure 6 which exclusively shows daily simulation results for May 15, including hindcasts driven by both StageIV and Q3, as well as the forecasts initialized using the two hindcasts. The initial conditions for the forecasts or the final states between the two hindcasts for the previous day are very close, consequently leading to very similar performance except for Basin 1. The similarity is explained by the antecedent conditions, specifically a dry period of about two weeks with little antecedent rainfall as indicated in Figure 4, during which the evolution of soil moisture states was controlled by evapotranspiration and deep percolation, and thus antecedent conditions were not affected by Stage IV or Q3. The exception in Basin 1 is caused by discrepancy of rainfall on May 13 between Stage IV and Q3 (not shown here), which leads to large differences in initial conditions for the May 15 event forecast. 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 Figure 7 shows the rainfall accumulation on May 15 from NOXP with two elevation angles at 1.8° and 2.4°, and the hybrid data obtained by merging quality observation from various elevation angles. Even though the NOXP was installed at high elevation (as shown in Figure 1) to minimize topographic blocking, the impact of the typical challenges of ground-based radar sensing in mountainous regions, including overshooting, blockage and ground clutter, are apparent in Fig. 8. An overview of hindcast results in the Pigeon River Basin on May 15 using the NOXP data, as well as the NU-WRF QPF and other ground radar-based QPEs including StageIV and Q3, and satellite-based IMERG data, are presented in Fig. 9. Both IMERG and NU-WRF overestimate the rainfall on May 15, thus leading to larger streamflow response. Simulations forced by NOXP QPEs largely underestimate streamflow for all the three small basins in the Pigeon (Basins 1, 2 and 3) due to terrain blocking as stated earlier. A posteriori analysis of hydrologic forecasts and hindcasts indicates that, despite the unusual high density and unique combination of IPHEx observations in this region, "true" rainfall during the IOP remains elusive at this time, though ongoing and future studies will reduce uncertainty through physically-based comprehensive integration of the full suite of IPHEx observations not yet available (Barros et al. 2014). However, with multiple QPEs and QPFs in hand, a distribution of streamflow simulations can be assembled, the spread of which explicitly represents the propagation of rainfall uncertainty to the hydrologic forecast, or in other words the model's sensitivity to rainfall uncertainty which is essential for quantifying the probability of flood occurrence. A significant effort was devoted to explore alternative strategies to improve the flood forecasts and hindcasts in the post-IOP phase of IPHEx including better QPF and QPE accuracy, and assimilation of discharge at the forecast points. ## 4. Improving Results – Meet the challenge ### 4.1 Improving forecasts by enhancing QPFs 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 The NU-WRF ensemble data assimilation system was developed with a focus on assimilating satellite precipitation-affected radiances into NU-WRF. The system uses an all-sky radiative transfer algorithm to connect the observed microwave radiances with the forecast model states. The analysis control variables are wind, temperature, surface pressure, water vapor and five hydrometeors including frozen and liquid phases. An ensemble of NU-WRF model forecasts are used to calculate state-dependent background error covariance (Zhang et al., 2013; Zupanski et al., 2011). The GPM (Global Precipitation Measurement satellite mission, Matsui et al., 2013) core observatory launched in February 2014 has an orbit extended to higher latitudes (65°) to provide broader spatial coverage (Hou et al. 2014). The microwave imager on board GPM (GMI, Global Microwave Imager) has thirteen microwave channels ranging in frequency from 10 GHz to 183 GHz. There were two overpasses of the GPM core observatory during the May 15 event, providing passive microwave observations of the storm precipitation process from To take advantage of these two overpasses, a data assimilation experiment was space. conducted to assimilate GPM data into NU-WRF, specifically GPM core and constellation crosscalibrated level-1C data from GMI and SSMIS (Special Sensor Microwave Imager/Sounder), aiming at improving the NU-WRF QPF. The experiment consists of 32 ensemble forecasts and the assimilation cycling is initiated by GFS (Global Forecast System, http://www.emc.ncep.noaa.gov) global analysis at 15UTC May 14, 2014. The assimilation time window is 3 hours. Observations that are available in each assimilation time window are submitted to pass quality control, and a subset of the data are used in the analysis. Two runs were carried out for the cycling period from 15UTC May 14 to 00UTC May 16, 2014. The first run assimilates ground-based conventional data from the NCEP (National Center for Environmental Prediction) data stream including wind, temperature and moisture (denoted as DA-CNT). The second run assimilates GMI and SSMIS (Special Sensor Microwave Imager/Sounder) precipitation-affected microwave radiances at frequencies 89, 166 and 183+/-7 GHz (denoted as DA-SAT). The analysis is solved in the outer domain at 9km resolution, and results are dynamically downscaled to 1km resolution via model simulations in the inner domain. Because of prohibitive high computational expense of using large high-resolution domains in ensemble data assimilation cycling, the areal extent of the model domain configuration in these runs is about half of the size of the NU-WRF operational forecast run depicted in Figure 2, and with 31 vertical levels instead of 61 to strike a balance between desirable domain size and vertical resolution and computational costs. The Goddard 3ICE microphysics scheme is applied in model state propagation and in precipitation-affected radiance simulation. The daily accumulations of QPFs from the two assimilation experiments on May 15, 2014 are displayed in Figure 5. Comparing to Q3 data and the operational NU-WRF forecast, the storm front traveled rapidly eastward in the control run DA-CNT, resulting in a significant displacement of the spatial QPF pattern. The assimilation run DA-SAT shows improved spatial rainfall patterns and position relative to the control run, but fails to correct the storm cumulative precipitation. The heaviest rain cell is much closer to the actual location as shown in Q3, though with slightly deviated position, i.e. the Q3 displays the heaviest rainfall over the southeast ridge lines of the Upper French Broad River basin, while the heaviest rain cell in the NU-WRF QPF with DA-SAT is on the west ridge lines reaching into the Pigeon River Basin. The flood forecasting results using the two QPFs are provided in Figure 9. Comparing to the streamflow observations and operational forecast-driven results, the QPFs from DA-SAT lead to excessively high streamflow response in the three small headwater catchments of the Pigeon River (Basins 1, 2 and 3), while
the OPFs from DA-CNT generate much lower streamflow response in the two basins on the eastern slopes of the Appalachians (Basins 2 and 3). In the inner mountain region, where orographic modulation of precipitation takes place at the ridge-valley scale, the QPFs are too high thus leading to excessive streamflow in Basin 1. These results show that despite clear improvement of the NU-WRF storm forecast with the assimilation of satellite data correcting the storm path and the overall spatial pattern of precipitation as shown by the difference between the accumulated QPFs of DA-CNT and DA-SAT, the improvement takes place at the mesoscale, and thus it's not sufficient to improve the QPF at the headwater catchment scale. This calls for investigating further refinements in the dynamical downscaling design NU-WRF model configuration and spin-up, and error characterization (e.g. bias) in the radiance assimilation scheme. In this case, the streamflow observations provided valuable verification for satellite data assimilation in hydrological applications, which can serve as a reference point to improve the bias correction in assimilation algorithms and ensemble forecasts. Finally, because the DA of microwave radiances introduced such a dramatic correction on the position and pattern of the storm, there is also an opportunity to investigate physical-statistical downscaling approaches (e.g. Nogueira and Barros, 2014b) to leverage the benefits at the mesoscale by improving the representation of moist processes at the cloud-resolving scale that is critical to resolve the individual storm cells that determine streamflow (and flash-flood) response in mountainous regions. 477 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 #### 4.2 Improving hindcasts by enhancing QPEs 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Previous work has demonstrated success using raingauge observations to characterize errors and uncertainties in QPEs, and then to adjust the QPEs leading to significant improvements in streamflow simulations (Tao and Barros, 2014a; Tao and Barros, 2013). The same approach was followed to improve the Q3 data. Specifically, the Q3 data were first compared against rainfall observations from the dense raingauge network comprising NASA dual-platform gauges, Duke PMM gauges, HADS and ECONet gauges as shown in Figure 1c, and then were adjusted at hourly time steps by linear regression between the Q3 and gauge observations. Figure 10 shows the comparison between the rainfall observations and the Q3 data, as well as the adjusted Q3 data (noted as Q3+) by three adjusting methods, namely Q3+ All based on the linear regression model derived using all the raingauge observations, Q3+ H/L separating adjustments for high elevation from low elevation as described in Tao and Barros (2013), and Q3+ CdfThr separating heavy rainfall domain from non-heavy rainfall domain using a threshold at 0.9 CDF (cumulative distribution function) derived from raingauge observations (Lin et al., 2015). As it can be seen from the figure, the accuracy of Q3+ is improved with reduced RMSE compared to the original Q3 data, and with relative larger storm rainfall accumulations although differences among the three gauge-corrected Q3+ data sets are small. The adjustments also include value-added information on spatial variability as illustrated by the contrasts between the cumulative rainfall patterns from the original Q3 and the Q3+ data on May 15 (Figure 11). Basin 2 streamflow hindcasts using Q3+ are higher and in better aggreement with observations, but streamflow is overestimated in Basins 1 and 3 (Figure 12). This highlights the difficulty in capturing small-scale precipitation variability using empirical (data-driven) raingauge correction methods. The number and distribution of gauges is limited in Basin 3 due to the fact that it was not possible to obtain gauge installation permits in the Pisgah National Forest. Moreover, in retrospect, the number of raingauges at mid and low elevations in Basin 1 is insufficient reflecting low awareness of the dominant role of low level orographic rainfall enhancement processes such as seeder-feeder interactions (Wilson and Barros, 2014; Wilson and Barros, 2015) in the design of the raingauge network at the time (2007) when it was first deployed (Prat and Barros, 2010). Consequently, the complexity of orographic modulation of precipitation processes in the SAM is not fully captured at the ridge-valley scale. 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 One of the merits of the simple linear regression adjustment is that the uncertainty associated with Q3 data can be explicitly represented for each pixel at each time step assuming that the uncertainty is normally distributed with the mean as the 'optimum' Q3+ data and standard deviation based on a selected confidence interval (CI) of the regression model, hence providing an unambiguous straightforward framework to specify temporal and spatial error structures in rainfall. The grey lines in Figure 12 depict the streamflow hindcasts spread for 50 rainfall replicates drawn from the normal distribution within 70%CI and 95%CI based on the derived regression models for Q3+ All as an example. Note that, even though the QPF from NU-WRF substantially overestimates rainfall, the estimated streamflow is still within the 95%CI envelope, but outside or at the edge of the 70%CI envelope, except for the flow peaks. This implies that all the uncertainty and errors associated with (and not only in) rainfall forcing, but also in initial conditions, model structure and model parameters interact nonlinearly and are propagated and integrated over time leading to the large bias in simulation results. To counteract the compounded effect of error propagataion and model memory on uncertainty build-up, physically-based merging of discharge observations and model forecasts is explored next using data-assimilation techniques. 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 ### 4.3 Improving forecast/hindcast by assimilating discharge observations #### 4.3.1 Implementation To investigate the value of data assimilation (DA) in aiding operational flood forecasts, discharge observations at the basin outlet are assimilated into the DCHM to systematically reduce uncertainty and errors in estimated soil moisture within the basin and thus produce better initial conditions for streamflow forecasting generally and flood forecasting in particular. Three data-assimilation systems (DAS, see the Appendix for detailed mathematical formulation), specifically the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS) and the Asynchronous Ensemble Kalman Filter (AEnKF) are tested here. Two models are involved in data assimilation, including a state equation or an input-to-state forward model which propagates hydrological states in time (i.e. the Eq. (1) in the Appendix), and a state-tooutput observations operator that relates states to observations (i.e. the Eq. (2) in the Appendix). In this study, the state vector consists of control variables including soil moisture from the top three model soil layers (top, middle and deep layer) at all pixels within the basin. The assimilated observations are the discharge at basin outlets when they become available. Furthermore, to evaluate a broad range of potential operational data-assimilation architectures, the DAS are implemented in different configurations with regard to assimilation frequency (AF: 15, 30 and 60 minutes) and assimilation time window (TW: 1, 2, and 3 hours), as summarized in Table 2. In the EnKF and EnKS DAS, only the current discharge observations are assimilated, while in the AEnKF all the available discharge observations within the TW are assimilated. When assimilating discharge into a distributed hydrologic model that simulates the spacetime evolution of rainfall-runoff response processes, there is a time-lag between the basin internal states at local places (i.e. soil moisture) and the discharge at the basin outlet reflecting the trajectory and travel time of a control volume of runoff (surface or subsurface) from any generic location within the basin to the outlet. The EnKF assimilates the current observation to correct/update the current hydrological states; thus, it does not account for the response delay at the outlet. The AEnKF is equivalent to a 4D-Var (Four-Dimensional Variational) method but does not need a tangent linear or adjoint model (Sakov et al., 2010), and it accounts for discrepancies among past model predictions and observations also at times different from the assimilation time within the specified TW. The EnKS implemented in this work uses the current observations to correct the antecedent states in the past, propagating information back in time and space to account for the time-lag explicitly, thus effectively re-initializing the model to propagate the updated past states forward to current time. Both the EnKS and AEnKF are asynchronous KF-based (Kalman Filter) algorithms with documented success in improving the representation of the impact of the time-lag in rainfall-runoff response at the outlet on streamflow simulations (Li et al., 2015; Li et al., 2013; Li et al., 2014; Rakovec et al., 2015; Sakov et al., 2010). 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 To generate the model ensembles, stochastic perturbations were applied to atmospheric forcing fields provided by NU-WRF, soil parameters and discharge observations in order to account for associated uncertainties in model inputs and possible measurement errors. Soil moisture estimates were also directly perturbed to account for potential errors in the state forecast model. Table 3 summarizes the methods and parameters applied for each
perturbation. QPFs were perturbed by multiplying a realization drawn from a log-normal distribution. Lognormally distributed multiplicative perturbations were also applied to incoming shortwave radiation, while normally distributed additive perturbations were applied for other atmospheric forcing fields including incoming longwave radiation, air temperature, air pressure, specific humidity and wind speed. Soil parameters used for calculation of the unsaturated hydraulic conductivity $(K(\theta) = K_s \left(\frac{\theta}{\theta}\right)^n)$ (Campbell, 1974), including the saturated hydraulic conductivity K_s and the power n=3+2/ λ in which λ is the pore-size index, were perturbed using the normally distributed additive method also. The perturbation to static soil parameters is applied once before running the simulations. Spatial soil moisture perturbations were generated by adding normally distributed noise with zero mean and a standard deviation as 5% of top soil moisture at each time step (i.e. 5min). At each location, the spatial soil moisture perturbations were transferred to the top, middle and deep soil layers using relative weights 4:2:1 in an attempt to capture the differences in DCHM soil layer depth and soil hydraulic properties. For the discharge observations, the normally distributed additive perturbation was used with a time-varying standard deviation that is a function of discharge itself, assuming that the uncertainty in discharge is much larger at high river-stage levels than at low stage levels (Clark et al., 2008; Sorooshian and Dracup, 1980). Landscape properties such as land-cover, emissivity, albedo, etc., were not perturbed. Finally, hindcasts were simulated using the Q3+ All gauge-corrected QPE product with uncertainty identified within 95% CI of the adjusting linear regression model as described in section 4.2. 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 The workflow of discharge assimilation is mapped in Figure 13. The latency of discharge observations is 30min~1hour, while the total number of discharge observations assimilated into the DCHM depends on the assimilation frequency, and also the time window for the AEnKF (Table 2). Given the uncertainty described above, a number of replicates of the state vector are propagated in time by the DCHM. At DA time, the true state vector conditioned on observations can be obtained by updating each replicate (background estimate) using a Kalman Gain (KG) matrix $K(t) = C_{XM}(C_M + C_Z)^{-1}$ where C_{XM} is the error cross covariance between state vector and estimated measurements, and C_M and C_Z is are error covariance matrices associated with the predicted measurements (i.e. streamflow estimates) and the observations, respectively. The calculation of KG is different for each tested DA scheme, i.e. AEnKF calculates the KG by augmenting the state vector with past streamflow estimates, while the soil moisture in the calculation of KG for EnKS is at a past time determined by the TW and AF (see details in the Appendix). EnKS is able to update all states within a TW, but here only the first states within the TW (i.e. at t - TW) are updated, and next the DCHM propagates the past states from all ensemble members at (t - TW) to the current time (t) again. The process is repeated iteratively at the next assimilation time (as shown in the Figure 13). #### 4.3.2 Analysis of DAS Performance Assimilation experiments were conducted in the three basins in the Pigeon River Basin (Basins 1, 2 and 3) for the largest event during the IPHEx-IOP (May 15) only due to the availability of Q3+_All rainfall (refer to Section 4.2). Hindcast results are shown in Figure 14, organized in four panels to illustrate hindcast results for the various DAS configurations: a) using the EnKF with different AF, b) using the AEnKF with different AF and TW, c) using the EnKS with different AF and TW, and d) the three best DAS identified according to the NSE (Nash-Sutcliffe Efficiency) metric as summarized in Table 2. Other evaluation metrics including the KGE (Kling-Gupta Efficiency) and the modified KGE (Gupta et al., 2009; Kling et al., 2012), and the errors in the peak flow value (EPV) and time (EPT) are also provided. It can be seen from Figure 14 that the EnKF is not capable of correctly capturing the temporal lag between basin states and basin-output fluxes during rainfall, because updating soil moisture storage at the DA time corrects the current discharge but it does not account for the time delay required to transfer the joint effects of spatial variability of antecedent soil moisture and rainfall on runoff generation to the basin outlet. By contrast, by also assimilating past discharge observations, the AEnKF produces much better simulations especially in Basins 1 and 3 compared to EnKF. The simulations with AEnKF are particularly improved for Basin 3 (AF = 15min; TW = 2hrs) with the NSE, KGE and modified KGE equal to 0.99, 0.94 and 0.96, respectively. The EnKS DAS also show better performance than EnKF due to explicitly accounting for the time-lag between basin internal states and outlet response, attaining an NSE, KGE and modified KGE of 0.98, 0.95 and 0.97 for Basin 1 (AF = 15 min; TW = 2 hrs). Note that, as pointed out by Tao and Barros (2013), both Basin 1 and Basin 3 have deep alluvial valleys which naturally slow and smooth rainfall-runoff response, and thus the hydrological processes are amenable to time integration at The nearly perfect skill achieved for AEnKF and EnKS moderate temporal resolution. configurations is partly attributed to the AF, i.e. the best performance is achieved by assimilating as many discharge observations as possible, and thus the optimal AF is equal to the discharge observation frequency (every 15min) consistent with Wanders et al. (2014). A note of caution is warranted as KF-based DAS implementations imply that observation errors are serially independent, an assumption that can be compromised when streamflow observations are very close together in time. However, given the large background uncertainty as shown in the Figure 14d) and the small uncertainty associated with observations (std. specified as 10% of the observations), this is it not likely to be a significant issue for this particular assimilation problem. Finally, AEnKF displays relatively lower uncertainty (shown by the ensemble spread for Basin 3 in Figure 14d) than EnKS (shown by the ensemble spread for Basins 1 and 2 in Figure 14d) by assimilating many (past) discharge observations, not just the current one. 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 Nevertheless, none of the DAS shows good results for Basin 2, the smallest basin with drainage area of 71km², steep slopes and shallow soils. The Basin 2 simulation with a best NSE of 0.71 is produced by EnKS with 15min AF and 1hr TW. Although the major peak of the hydrograph is underestimated and the KGE and the modified KGE are relatively low (0.58 and 0.72, respectively), the peak time error is among the smallest (±30min), which is critical for flash-flood warning, and thus we still use this scheme (AF = 15min; TW = 1hr) as the best configuration for Basin 2. Simulations with longer TW, i.e. EnKS AF15min TW2hr and EnKS AF15min TW3hr, show comparable or slightly worse NSE results (0.67 and 0.61, respectively as shown in Table 2) but have significant better KGE, modified KGE and peak values, albeit with larger errors in time-to-peak (about 1.5 hr). That is, the EnKS updating of antecedent soil moisture 2hr or 3hr before the assimilation time has a strong impact on the streamflow at the basin outlet 0.5-1.5 hr later, thus over a shorter time-lag than the TW (2-3hr). This behavior implies that the weights used to transfer soil moisture perturbations in the different soil layers are important to determine the simulated hydrograph ensemble spread when the number of ensemble replicates is limited. For example, surface runoff and shallow interflow dominate the rising limb of the hydrograph in Basin 2 (Barros and Tao, 2013) and therefore the amplitude of soil moisture perturbations in the two top soil layers will determine the spread of the simulated discharge in this case. Understanding of rainfall-runoff processes in the context of basin-specific topography and geomorphology can provide therefore valuable insights in the practical implementation of ensemble-based DAS. 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 Previous studies suggest that the time of concentration is a good estimate of the TW for DA (Li et al., 2013; Rakovec et al., 2015). However, the experiments conducted in the context of this work suggest that quality DAS is associated with TWs significantly shorter than the time of concentration (e.g. about 5hr for the smallest Basin 2, and much larger for Basins 1 and 3). Indeed, the best performance is attained when the latency of the observations is assumed to be nearly instantaneous (AF=temporal resolution of the observations), which is possible for these hindcast simulations, but unrealistic in an operational environment. It should be emphasized that for distributed hydrologic models the DAS performance for a particular basin depends not only on basin geomorphologic features (i.e. topography, elevation, size, etc.) but also on temporal and spatial rainfall characteristics (i.e. rain cell's location is close to the basin outlet or not), initial soil moisture conditions, and their uncertainty. Although there is no universal DAS configuration that will outperform all others at all times, a priori studies to explore the sensitivity of DAS to the TW/AF ratio that is ultimately controlled by the temporal resolution of the observations and their latency should prove helpful in practice. #### 4.3.3 Operational Forecasting Application Here, we use the 'best' DAS from the
flood hindcast simulations for each basin (i.e. EnKS_AF15min_TW2hr for Basin 1, EnKS_AF15min_TW1hr for Basin 2 and AEnKF_AF15min_TW2hr for Basin 3, Table 2) to simulate flood forecasting in operational mode, i.e. assimilating available discharge observations only before the forecasting time (illustrated by Figure 13). The flood forecasting results assimilating discharge observations are presented in Figure 15, and the corresponding evaluation metrics are summarized in Table 4. As discussed earlier, the purpose of asynchronous and smoother implementations of the Kalman Filter is to introduce memory in the data assimilation and thus capture nonlinear interactions that are essential to improve initial conditions for future forecasts. This is apparent from inspecting the EnKS results: the soil moisture storage at t-TW is improved by assimilating observations at time t, and the updated states at t-TW (i.e. improved initial conditions for t-TW+1 onward), were propagated subsequently by the DCHM to time t. From the point of view of capturing the highly-nonlinear rainfall-runoff processes, the states propagated to t after correction by the EnKS at t-TW are more accurate than the original states at t, or the updated states at t by EnKF (i.e. improved initial conditions for t+1 onward, which is to say the EnKS updating at t-TW is equivalent to model reinitialization). In the context of operational forecasts, the maximum forecast lead time is the time difference between the last step of the forecasting simulation (00UTC) and the time when the forecast is issued (as indicated by the dots on the time-axis in Figure 15). For Basins 2 and 3, the forecasting results with shorter lead times are better than with longer lead times as expected (NSEs are summarized in Table 4). Interestingly, for Basin 1, forecast skill is best for the 12hrlead time. This behavior is explained by the temporal variability of rainfall over the basin: the predicted storm (QPF) began around 03UTC for all three basins, and it lasted until 11UTC in Basins 2 and 3 but it stopped sharply before 09UTC in Basin 1, thus explaining the maximum lead time of 15 hours. Assimilating discharge after the storm stops does not add forecast value because the uncertainty in rainfall is specified as a fraction of the QPF, and the corrections applied to the model state vector are too small despite large streamflow innovations. In Basins 2 and 3, the major storm activity stopped around 07UTC, but it was followed by two smaller events that are essential to widen the ensemble spread of the simulations, and thus enable discharge assimilation to add information (i.e. observations are within the estimation space). Exploring strategies to represent uncertainty in the timing of rainfall onset and termination, conditional on local hydrometeorology and specific storm characteristics, should help with improving DAS performance, especially in small basins and for short heavy precipitation events which are critical for flash-flood forecasting. Finally, note very large NSEs of 0.87, 0.78, 0.72 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 and 0.51 for flood forecasting in Basin 3 for 6hr, 9hr, 12hr and 15hr lead times, a robust performance that is uncommon in operational flood forecasting, especially using uncalibrated physically-based hydrologic models (e.g. Kim and Barros, 2001 for results using data driven models). #### 5. Conclusions and Discussion During the IPHEx-IOP, daily flood hindcasts and forecasts were conducted in a virtual operational environment without tuning initial conditions or model calibration for twelve headwater catchments in the Southern Appalachians. In the post-IOP phase of the campaign, various strategies were implemented in order to investigate alternative pathways to improve flood forecasting skill in mountainous regions including: improvement of NWP QPFs, improvement of QPEs with an eye on improving initial conditions for hydrologic modeling, and improvement of QFFs (Quantitative flash-Flood Forecasts) through assimilation of discharge observations. The latter proved to be the most promising approach attaining superior (an unprecedented) skill for long lead-times in headwater basins. The study also illustrated the sensitivity of DAS to basin hydro-geomorphic characteristics in addition to the temporal and spatial structure of rainfall: a survey of Table 2 shows that DCHM-DAS skill metrics for Basins 1 and 3, larger watersheds with alluvial valleys and slower rainfall-runoff response, are significantly less variable among the various configurations than the skill metrics for Basin 2, a small catchment with shallow gravelly soils and steep slopes. Future operational testbeds could benefit from multi-model QPFs and multi-model QFFs (i.e. using multiple hydrological models with multi-source of QPFs to produce a multi-model streamflow ensemble), implementation of operational forecasting with longer lead times on the basis of local time (instead of UTC time), near-real time ingestion of ground- and satellite-based QPEs, and assimilating not only discharge observations, but also satellite-based and/or ground-based soil moisture observations, to improve initial for hydrological forecasts. The latter can provide valuable constraints to address the question of uncertainty in the choice of the assimilation time window as the antecedent space-time variability of rainfall can be characterized by the soil moisture products, i.e. estimating a suitable time window based on temporal-spatial soil moisture information for each assimilation time. Specific opportunities for improving a number of issues are worthwhile further investigation: - i) The discharge assimilation show significant flood forecasting improvements for individual events during the IPHEx-IOP. During wet periods, the benefits of continuous DAS, specifically by correcting soil moisture, may lead to even better results by providing better initial conditions for sequential storms. Nevertheless, only one major storm occurred during the IPHEx-IOP, and further evaluation of the coupled DCHM-DAS should be pursued for a larger number of storms encompassing representative synoptic and mesoscale weather regimes.. This could be accomplished in the future by selecting a historical period with several successive events for investigating of the system's effectiveness in improving initial conditions of later events by assimilating discharge observations of preceding events. Further work is also needed to implement the data assimilation systems tested here in realistic operational environments. - ii) Even though a unique combination of high-quality QPE products was obtained for the campaign, none of these are perfect, i.e. raingauge data only represent point-scale observations, ground-based radar observations severely suffer from topography related errors in mountainous regions, and satellite-based observations are limited by retrieval uncertainty and typically have coarse spatial and, or temporal resolution. Assimilating discharge data for correcting rainfall and model parameters using lumped hydrologic models was pursued previously (Harader et al., 2012), but it had not yet been attempted using a fully-distributed model in mountainous terrain. Further research is needed to integrate the benefits of improved QPFs and QPEs with hydrologic DAS. iii) Because landslides (e.g. debris flow) are linked often to flood events in mountainous terrain, there is an opportunity to further extend the operational flood forecasting framework to include landslide initiation as in Tao and Barros (2014a). ### Acknowledgments This work was supported by NASA's Precipitation Measurement Missions Program and GPM Ground Validation (Grant Number NNX14AE71G with Ana Barros, the corresponding author). The first author was a Ph.D. student at Duke University in the Barros group, and now is at the Earth System Science Interdisciplinary Center (ESSIC) of the University of Maryland. Barros group members Miguel Nogueira, Lauren Lowman, and Yajuan (Viola) Duan downloaded precipitation and discharge data, and helped with downscaling precipitation and analysis during the IPHEx-IOP. Di Wu and Christa Peters-Lidard provided the NU-WRF forecasting fields including QPFs for the entire IOP. Sara Zhang conducted the NU-WRF data assimilation simulations for the May 15th event. Jonathan Gourley facilitated access to the Q3 data and provided the NOXP QPEs. We thank Manos Anagnostou's group at University of Connecticut for their valuable input, and all participants in the 'GPM-GV Real-time IPHEx Hydrological Modeling Email List' for their participation. ## **Appendix: Data Assimilation Algorithms** Data assimilation schemes include two models, a state equation or an input-to-state forward model (the physics model) that propagates hydrologic states in time, and an observation operator or a state-to-output model that relates hydrologic states with observations (Liu and Gupta, 2007). The forward model is represented using Equation (1), $$x(t) = \mathcal{F}(x(t-1), \alpha, u(t), t) + \omega(t)$$ (1) where x(t) is the state vector, \mathcal{F} is the DCHM in our case, α represents time-invariant data sets or model parameters, u(t) represents time-variant forcing data sets, and $\omega(t)$ is the uncertainty in the model structure. Given appropriate uncertainty representation, an ensemble of a number of replicates of the state vector is propagated from t-1 to t. Each replicate of the state vector can be written as $x_j(t)$ where j is the j^{th} replicate of an ensemble of size Ne. In this study, the control variables include soil moisture from each soil layer at all the pixels within a basin, i.e. $x_j = [\theta_1^t, ..., \theta_N^t, \theta_1^m, ..., \theta_N^m, \theta_1^d, ..., \theta_N^d]_j^T$ where θ_*^t is the soil moisture in the top soil layer, θ_*^m is the soil moisture in the middle soil layer, and
θ_*^d is the soil moisture in the deep soil layer. N is the total number of basin grid elements. The size of the state vector x_j is $Ns \times 1$, where Ns (Ns = 3N) is the total number of control variables or states. The observations operator \mathcal{M} maps the true state vector to the observations vector z(t), $$z(t) = \mathcal{M}(x(t^*)) + \xi(t) \tag{2}$$ where $\xi(t)$ represents the uncertainty associated with the observations, distributed with a zero mean and a covariance matrix C_Z . Here z(t) are the discharge observations at basin outlets, and thus \mathcal{M} represents the non-linear hydrological processes converting soil moisture states to the basin discharge, which indeed is a Markov process relating observations not only to the states at current time but also at antecedent time steps (indicated by t^*). The various ensemble data assimilation schemes differ in the updating strategies. #### a) Ensemble Kalman Filter (EnKF) and Asynchronous EnKF In the EnKF, the updating equation is given by, $$x_j^+(t) = x_j(t) + K(t)\left(z_j(t) - M\left(x_j(t)\right)\right)$$ (3) where $x_j^+(t)$ represents the updated states (posterior or analysis) and $x_j(t)$ is the state vector before updating (prior or background estimates), $M(x_j(t))$ is the jth replicate of streamflow estimates by the DCHM, and K(t) is the Kalman gain matrix calculated as follows: $$K(t) = C_{XM}(C_M + C_Z)^{-1}$$ (4) C_{XM} is the error cross covariance between state vector and estimated measurements at current (DA) time t, and C_M and C_Z are the error covariance matrices associated with the predicted measurements and the observations, respectively. The Asynchronous EnKF (AEnKF) is a modified version of the EnKF recently proposed by Sakov et al. (2010), which accounts for mismatches between historical estimates and observations at times different from the assimilation time. The updating equation for the AEnKF is expressed by Equation (6), $$x_i^+(t) = x_i(t) + K_{TW}(z_i^T - M_i^T)$$ (5) where the Kalman gain matrix K_{TW} is calculated by augmenting the state vector with past model predictions within an assimilating time window (TW) (see details in (Rakovec et al., 2015)), and the transpose vectors z_j^T and M_j^T include all the observations and model predictions within the TW. Note that the dimension of K_{TW} is different from K(t) in Equation (4). ### b) Ensemble Kalman Smoother (EnKS) In the EnKS, the updating is not just applied to the current time step, but can be also applied for previous time steps within an assimilating time window (TW). The updating equation of a fixed-lag EnKS is expressed by: $$x_i^+(t - TW) = x_i(t - TW) + K_{TW}\{z_i(t) - M[x_i(t)]\}$$ (6) and the error cross covariance C_{XM} in the Kalman gain matrix K_{TW} is calculated using the antecedent state variables at t-TW and the model predictions at current time t. Others are the same as for equation (3), and the K_{TW} here has the same dimension as K(t) in Equation (4). Equation (6) indicates that the updating procedure can be performed for multiple prior time steps within the TW. However, for physically-based and fully-distributed hydrological models such as the DCHM, the memory of the hydrologic system (e.g. soil water storage in the basin) cannot be directly explained in the EnKS, and thus it needs to be propagated forward by the model itself, that is equivalent to model re-initialization (Li et al., 2015). In this study, only the states at t-TW are updated using Equation (6) and then are propagated in time by the DCHM. ### References - 826 Addor, N., Jaun, S., Fundel, F., Zappa, M., 2011. An operational hydrological ensemble - prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios. - 828 Hydrol Earth Syst Sc, 15(7): 2327-2347. - Alfieri, L. et al., 2014. Evaluation of ensemble streamflow predictions in Europe. J. Hydrol., 517: - 913-922. - Amengual, A. et al., 2008. A hydrometeorological model intercomparison as a tool to quantify - the forecast uncertainty in a medium size basin. Nat Hazard Earth Sys, 8(4): 819-838. - 833 Amengual, A., Romero, R., Vich, M., Alonso, S., 2009. Inclusion of potential vorticity - uncertainties into a hydrometeorological forecasting chain: application to a medium size - basin of Mediterranean Spain. Hydrol Earth Syst Sc, 13(6): 793-811. - 836 Anagnostou, M.N. et al., 2013. Performance Evaluation of a New Dual-Polarization - Microphysical Algorithm Based on Long-Term X-Band Radar and Disdrometer - 838 Observations. J. Hydrometeorol., 14(2): 560-576. - 839 Band, L.E., Hwang, T., Hales, T.C., Vose, J., Ford, C., 2012. Ecosystem processes at the - watershed scale: Mapping and modeling ecohydrological controls of landslides. - 841 Geomorphology, 137(1): 159-167. - 842 Barros, A.P., 1995. Adaptive Multilevel Modeling of Land-Atmosphere Interactions. Journal of - 843 Climate, 8(9): 2144-2160. - 844 Barros, A.P. et al., 2014. NASA GPM-Ground Validation: Integrated Precipitation and - Hydrology Experiment 2014 Science Plan. EPL/Duke University (Pub.): 64. 846 Bartholmes, J.C., Thielen, J., Ramos, M.H., Gentilini, S., 2009. The european flood alert system 847 EFAS - Part 2: Statistical skill assessment of probabilistic and deterministic operational 848 forecasts. Hydrol Earth Syst Sc, 13(2): 141-153. 849 Benoit, R., Kouwen, N., Yu, W., Chamberland, S., Pellerin, P., 2003. Hydrometeorological 850 aspects of the Real-Time Ultrafinescale Forecast Support during the Special Observing 851 Period of the MAP. Hydrol Earth Syst Sc, 7(6): 877-889. 852 Berthet, L., Andreassian, V., Perrin, C., Javelle, P., 2009. How crucial is it to account for the 853 antecedent moisture conditions in flood forecasting? Comparison of event-based and 854 continuous approaches on 178 catchments. Hydrol Earth Syst Sc, 13(6): 819-831. 855 Bloschl, G., Reszler, C., Komma, J., 2008. A spatially distributed flash flood forecasting model. 856 Environmental Modelling & Software, 23(4): 464-478. 857 Campbell, G.S., 1974. A simple method for determining unsaturated conductivity from moisture 858 retention data. Soil Sci., 117(6): 311-314. 859 Casadel, M., Dietrich, W.E., Miller, N.L., 2003. Testing a model for predicting the timing and 860 location of shallow landslide initiation in soil-mantled landscapes. Earth Surface 861 Processes and Landforms, 28(9): 925-950. 862 Castaings, W., Dartus, D., Le Dimet, F.X., Saulnier, G.M., 2009. Sensitivity analysis and 863 parameter estimation for distributed hydrological modeling: potential of variational 864 methods. Hydrol Earth Syst Sc, 13(4): 503-517. Ciach, G.J., Krajewski, W.F., Villarini, G., 2007. Product-error-driven uncertainty model for 865 866 probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeorol., 867 8(6): 1325-1347. - 868 Clark, M.P. et al., 2008. Hydrological data assimilation with the ensemble Kalman filter: Use of - streamflow observations to update states in a distributed hydrological model. Adv. Water - 870 Resour., 31(10): 1309-1324. - Cloke, H.L., Pappenberger, F., 2009. Ensemble flood forecasting: A review. J. Hydrol., 375(3-4): - 872 613-626. - 873 Coccia, G., Todini, E., 2011. Recent developments in predictive uncertainty assessment based on - the model conditional processor approach. Hydrol Earth Syst Sc, 15(10): 3253-3274. - 875 Collier, C.G., 2007. Flash flood forecasting: What are the limits of predictability? Quarterly - Journal of the Royal Meteorological Society, 133(622): 3-23. - 877 Connelly, B.A. et al., 1999. Advanced hydrologic prediction system. Journal of Geophysical - Research-Atmospheres, 104(D16): 19655-19660. - 879 Crow, W.T., Reichle, R.H., 2008. Comparison of adaptive filtering techniques for land surface - data assimilation. Water Resources Research, 44(8). - 881 Crow, W.T., Van Loon, E., 2006. Impact of incorrect model error assumptions on the sequential - assimilation of remotely sensed surface soil moisture. J. Hydrometeorol., 7(3): 421-432. - 883 Cuo, L., Pagano, T.C., Wang, Q.J., 2011. A Review of Quantitative Precipitation Forecasts and - Their Use in Short- to Medium-Range Streamflow Forecasting. J. Hydrometeorol., 12(5): - 885 713-728. - Davolio, S. et al., 2009. High resolution simulations of a flash flood near Venice. Nat Hazard - 887 Earth Sys, 9(5): 1671-1678. - Davolio, S., Miglietta, M.M., Diomede, T., Marsigli, C., Montani, A., 2013. A flood episode in - northern Italy: multi-model and single-model mesoscale meteorological ensembles for - hydrological predictions. Hydrol Earth Syst Sc, 17(6): 2107-2120. 891 De Jongh, I., Quintelier, E., Cauwenberghs, K., 2012. Using combined raingauge and high-892 resolution radar data in an operational flood forecast system in Flanders. Weather Radar 893 and Hydrology, 351: 472-477. 894 Demargne, J. et al., 2009. Application of Forecast Verification Science to Operational River 895 Forecasting in the US National Weather Service. Bulletin of the American 896 Meteorological Society, 90(6): 779-784. 897 Demargne, J. et al., 2014. The Science of NOAA's Operational Hydrologic Ensemble Forecast 898 Service. Bulletin of the American Meteorological Society, 95(1): 79-98. 899 Demeritt, D., Nobert, S., Cloke, H.L., Pappenberger, F., 2013. The European Flood Alert System 900 and the communication, perception, and use of ensemble predictions for operational flood 901 risk management. Hydrol Process, 27(1): 147-157. 902 Devonec, E., Barros, A.P., 2002. Exploring the transferability of a land-surface hydrology model. 903 J. Hydrol., 265(1-4): 258-282. 904 Dietrich, J. et al., 2009. Assessing uncertainties in flood forecasts for decision making: prototype 905 of an operational flood management system integrating ensemble predictions. Nat Hazard 906 Earth Sys, 9(4): 1529-1540. 907 Drobinski, P. et al., 2014. HYMEX A 10-Year Multidisciplinary Program on the Mediterranean 908 Water Cycle. Bulletin of the American Meteorological Society,
95(7): 1063-+. 909 Droegemeier, K.K. et al., 2000. Hydrological aspects of weather prediction and flood warnings: 910 Report of the Ninth Prospectus Development Team of the US Weather Research Program. 911 Bulletin of the American Meteorological Society, 81(11): 2665-2680. 912 Ducrocq, V. et al., 2014. HYMEX-SOPI The Field Campaign Dedicated to Heavy Precipitation 913 and Flash Flooding in the Northwestern Mediterranean. Bulletin of the American 914 Meteorological Society, 95(7): 1083-+. 915 Ebert, E.E., 2001. Ability of a poor man's ensemble to predict the probability and distribution of 916 precipitation. Mon. Weather Rev., 129(10): 2461-2480. 917 Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using 918 Monte Carlo methods to forecast error statistics. Journal of Geophysical Research-919 Oceans, 99(C5): 10143-10162. Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical 920 921 implementation. Ocean Dynam, 53(4): 343-367. 922 Evensen, G., van Leeuwen, P.J., 2000. An ensemble Kalman smoother for nonlinear dynamics. 923 Mon. Weather Rev., 128(6): 1852-1867. 924 Ferretti, R. et al., 2014. Overview of the first HyMeX Special Observation Period over Italy: 925 observations and model results. Hydrol Earth Syst Sc, 18(5): 1953-1977. 926 Flores, A.N., Entekhabi, D., Bras, R.L., 2010. Reproducibility of soil moisture ensembles when 927 representing soil parameter uncertainty using a Latin Hypercube-based approach with 928 correlation control. Water Resources Research, 46. 929 Garambois, P.A., Roux, H., Larnier, K., Castaings, W., Dartus, D., 2013. Characterization of 930 process-oriented hydrologic model behavior with temporal sensitivity analysis for flash 931 floods in Mediterranean catchments. Hydrol Earth Syst Sc, 17(6): 2305-2322. 932 Garcia-Pintado, J., Barbera, G.G., Erena, M., Castillo, V.M., 2009. Calibration of structure in a 933 distributed forecasting model for a semiarid flash flood: Dynamic surface storage and channel roughness. J. Hydrol., 377(1-2): 165-184. - 935 Garcia-Quijano, J.F., Barros, A.P., 2005. Incorporating canopy physiology into a hydrological 936 model: photosynthesis, dynamic respiration, and stomatal sensitivity. Ecological 937 Modelling, 185(1): 29-49. 938 Gebremichael, M., Barros, A.P., 2006. Evaluation of MODIS gross primary productivity (GPP) 939 in tropical monsoon regions. Remote Sensing of Environment, 100(2): 150-166. 940 Gourley, J.J., Vieux, B.E., 2005. A method for evaluating the accuracy of quantitative 941 precipitation estimates from a hydrologic modeling perspective. J. Hydrometeorol., 6(2): 942 115-133. 943 Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared 944 error and NSE performance criteria: Implications for improving hydrological modelling. 945 J. Hydrol., 377(1-2): 80-91. 946 Hapuarachchi, H.A.P., Wang, Q.J., Pagano, T.C., 2011. A review of advances in flash flood 947 forecasting. Hydrol Process. 948 Hersbach, H., 2000. Decomposition of the continuous ranked probability score for ensemble 949 prediction systems. Weather and Forecasting, 15(5): 559-570. 950 Hogue, T.S., Sorooshian, S., Gupta, H., Holz, A., Braatz, D., 2000. A multistep automatic 951 calibration scheme for river forecasting models. J. Hydrometeorol., 1(6): 524-542. 952 Hsiao, L.F. et al., 2013. Ensemble forecasting of typhoon rainfall and floods over a mountainous 953 watershed in Taiwan. J. Hydrol., 506: 55-68. - NASA Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), Greenbelt, MD. Huffman, G., 2015. GPM Level 3 IMERG Half Hourly 0.1 x 0.1 degree Precipitation, version 03. - 957 Huffman, G.J. et al., 2014. NASA Global Precipitation Measurement (GPM) Integrated Multi - - satellitE Retrievals for GPM (IMERG), NASA/GSFC, Greenbelt, MD. - 959 Jasper, K., Gurtz, J., Herbert, L., 2002. Advanced flood forecasting in Alpine watersheds by - coupling meteorological observations and forecasts with a distributed hydrological model. - 961 J. Hydrol., 267(1-2): 40-52. - Jaun, S., Ahrens, B., 2009. Evaluation of a probabilistic hydrometeorological forecast system. - 963 Hydrol Earth Syst Sc, 13(7): 1031-1043. - 964 Kalogiros, J. et al., 2013a. Correction of Polarimetric Radar Reflectivity Measurements and - Rainfall Estimates for Apparent Vertical Profile in Stratiform Rain. Journal of Applied - Meteorology and Climatology, 52(5): 1170-1186. - 967 Kalogiros, J. et al., 2013b. Optimum Estimation of Rain Microphysical Parameters From X-Band - Dual-Polarization Radar Observables. Ieee Transactions on Geoscience and Remote - 969 Sensing, 51(5): 3063-3076. - 970 Kalogiros, J. et al., 2014. Evaluation of a New Polarimetric Algorithm for Rain-Path Attenuation - Orrection of X-Band Radar Observations Against Disdrometer. Ieee Transactions on - Geoscience and Remote Sensing, 52(2): 1369-1380. - 973 Kang, D., Barros, A., Déry, S., 2013. Evaluating Passive Microwave Radiometry for the - Dynamical Transition From Dry to Wet Snowpacks. IEEE Transactions on Geoscience - 975 and Remote Sensing. - 976 Kang, D.H., Barros, A.P., 2012a. Observing System Simulation of Snow Microwave Emissions - Over Data Sparse Regions-Part I: Single Layer Physics. IEEE Transactions on - 978 Geoscience and Remote Sensing, 50(5): 1785-1805. - 879 Kang, D.H., Barros, A.P., 2012b. Observing System Simulation of Snow Microwave Emissions - Over Data Sparse Regions-Part II: Multilayer Physics. IEEE Transactions on Geoscience - 981 and Remote Sensing, 50(5): 1806-1820. - 982 Kim, G., Barros, A.P., 2001. Quantitative flood forecasting using multisensor data and neural - 983 networks. J. Hydrol., 246(1-4): 45-62. - Kirstetter, P.-E. et al., 2012. Toward a Framework for Systematic Error Modeling of Spaceborne - Precipitation Radar with NOAA/NSSL Ground Radar Based National Mosaic QPE. J. - 986 Hydrometeorol., 13(4): 1285-1300. - 987 Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an - ensemble of climate change scenarios. J. Hydrol., 424: 264-277. - Komma, J., Bloschl, G., Reszler, C., 2008. Soil moisture updating by Ensemble Kalman Filtering - in real-time flood forecasting. J. Hydrol., 357(3-4): 228-242. - 991 Lee, H., Seo, D.J., Koren, V., 2011. Assimilation of streamflow and in situ soil moisture data - into operational distributed hydrologic models: Effects of uncertainties in the data and - initial model soil moisture states. Adv. Water Resour., 34(12): 1597-1615. - 994 Li, H.B., Luo, L.F., Wood, E.F., Schaake, J., 2009. The role of initial conditions and forcing - uncertainties in seasonal hydrologic forecasting. Journal of Geophysical Research- - Atmospheres, 114. - 997 Li, Y., Ryu, D., Western, A.W., Wang, Q., 2015. Assimilation of stream discharge for flood - 998 forecasting: Updating a semidistributed model with an integrated data assimilation - scheme. Water Resources Research. - Li, Y., Ryu, D., Western, A.W., Wang, Q.J., 2013. Assimilation of stream discharge for flood - forecasting: The benefits of accounting for routing time lags. Water Resources Research, - 1002 49(4): 1887-1900. - 1003 Li, Y. et al., 2014. An integrated error parameter estimation and lag-aware data assimilation - scheme for real-time flood forecasting. J. Hydrol., 519: 2722-2736. - Liao, Z. et al., 2011. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional - slope-stability analysis)'s predictive skill for hurricane-triggered landslides: a case study - in Macon County, North Carolina. Nat Hazards, 58(1): 325-339. - Lin, X., Kidd, C., Tao, J., Barros, A.P., 2015. Comparisons of Rain Estimates from Ground - 1009 Radar and Satellite over Mountainous Regions. Journal of Hydrometeorology (In - 1010 Revision). - Lin, Y., Mitchell, K., 2005. The NCEP stage II/IV hourly precipitation analyses: Development - and applications, 19th Conf. on Hydrology, , Amer. Meteor. Soc., San Diego, CA. - 1013 Liu, Y. et al., 2012. Advancing data assimilation in operational hydrologic forecasting: - progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sc, 16(10): 3863- - 1015 3887. - Liu, Y.Q., Gupta, H.V., 2007. Uncertainty in hydrologic modeling: Toward an integrated data - assimilation framework. Water Resources Research, 43(7). - Lu, C., Yuan, H., Tollerud, E.I., Wang, N., 2010. Scale-Dependent Uncertainties in Global QPFs - and QPEs from NWP Model and Satellite Fields. J. Hydrometeorol., 11(1): 139-155. - Madsen, H., Skotner, C., 2005. Adaptive state updating in real-time river flow forecasting a - 1021 combined filtering and error forecasting procedure. J. Hydrol., 308(1-4): 302-312. - Martina, M.L.V., Todini, E., Libralon, A., 2008. Rainfall Thresholds for Flood Warning Systems: - A Bayesian Decision Approach. Water Trans, 63: 203-227, 291. - 1024 Mascaro, G., Vivoni, E.R., Deidda, R., 2010. Implications of Ensemble Quantitative - Precipitation Forecast Errors on Distributed Streamflow Forecasting. J. Hydrometeorol., - 1026 11(1): 69-86. - Matsui, T. et al., 2013. GPM Satellite Simulator over Ground Validation Sites. Bulletin of the - American Meteorological Society, 94(11): 1653-1660. - 1029 Matsui, T. et al., 2014. Introducing multisensor satellite radiance-based evaluation for regional - Earth System modeling. Journal of Geophysical Research-Atmospheres, 119(13). - 1031 McEnery, J., Ingram, J., Duan, Q.Y., Adams, T., Anderson, L., 2005. NOAA's advanced - hydrologic prediction service Building pathways for better science in water forecasting. - Bulletin of the American Meteorological Society, 86(3): 375-+. - 1034 McLaughlin, D., 2002. An integrated approach to hydrologic data assimilation: interpolation, - smoothing, and filtering. Adv. Water Resour., 25(8-12): 1275-1286. - Moore, R.J., Cole, S.J., Bell, V.A., Jones, D.A., 2006. Issues in flood forecasting: ungauged - basins, extreme floods and uncertainty. Frontiers in Flood Research, 305: 103-122. - 1038 Nash, J.E.,
Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I A - 1039 discussion of principles. J. Hydrol., 10(3): 282-290. - Nester, T., Komma, J., Viglione, A., Bloschl, G., 2012. Flood forecast errors and ensemble - spread-A case study. Water Resources Research, 48. - Nogueira, M., Barros, A., 2014. The Integrated Precipitation and Hydrology Experiment - - Hydrologic Applications for the Southeast US (IPHEx-H4SE) Part III: High-Resolution - Ensemble Rainfall Products. Report EPL-2013-IPHEX-H4SE-3, EPL/Duke University - 1045 (Pub.): 80. - 1046 Nogueira, M., Barros, A.P., 2015. Transient Stochastic Downscaling of Quantitative - 1047 Precipitation Estimates for Hydrological Applications. Journal of Hydrology (In - Revision). - Noh, S.J., Rakovec, O., Weerts, A.H., Tachikawa, Y., 2014. On noise specification in data - assimilation schemes for improved flood forecasting using distributed hydrological - 1051 models. J. Hydrol., 519: 2707-2721. - Norbiato, D., Borga, M., Esposti, S.D., Gaume, E., Anquetin, S., 2008. Flash flood warning - based on rainfall thresholds and soil moisture conditions: An assessment for gauged and - 1054 ungauged basins. J. Hydrol., 362(3-4): 274-290. - Pagano, T.C. et al., 2014. Challenges of Operational River Forecasting. J. Hydrometeorol., 15(4): - 1056 1692-1707. - Palmer, R. et al., 2009. Weather Radar Education at the University of Oklahoma An Integrated - Interdisciplinary Approach. Bulletin of the American Meteorological Society, 90(9): - 1059 1277-1282. - 1060 Pappenberger, F. et al., 2005. Cascading model uncertainty from medium range weather - forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within - the European Flood Forecasting System (EFFS). Hydrol Earth Syst Sc, 9(4): 381-393. - Pappenberger, F. et al., 2015. How do I know if my forecasts are better? Using benchmarks in - hydrological ensemble prediction. J. Hydrol., 522: 697-713. - Pappenberger, F., Scipal, K., Buizza, R., 2008. Hydrological aspects of meteorological - 1066 verification. Atmos. Sci. Lett., 9(2): 43-52. 1067 Peters-Lidard, C.D. et al., 2015. Integrated modeling of aerosol, cloud, precipitation and land 1068 processes at satellite-resolved scales. Environmental Modelling & Software, 67: 149-159. 1069 Petersen, W., Krajewski, W., 2013. Status Update on the GPM Ground Validation Iowa Flood 1070 Studies (IFloodS) Field Experiment, EGU General Assembly Conference Abstracts, pp. 1071 13345. 1072 Prat, O.P., Barros, A.P., 2010. Assessing satellite-based precipitation estimates in the Southern 1073 Appalachian mountains using rain gauges and TRMM PR. Advances in Geosciences, 25: 1074 143-153. 1075 Rabuffetti, D., Barbero, S., 2005. Operational hydro-meteorological warning and real-time flood 1076 forecasting: the Piemonte Region case study. Hydrol Earth Syst Sc, 9(4): 457-466. 1077 Rabuffetti, D., Ravazzani, G., Corbari, C., Mancini, M., 2008. Verification of operational 1078 Quantitative Discharge Forecast (QDF) for a regional warning system - the AMPHORE 1079 case studies in the upper Po River. Nat Hazard Earth Sys, 8(1): 161-173. 1080 Rakovec, O., Weerts, A.H., Hazenberg, P., Torfs, P.J.J.F., Uijlenhoet, R., 2012. State updating of 1081 a distributed hydrological model with Ensemble Kalman Filtering: effects of updating 1082 frequency and observation network density on forecast accuracy. Hydrol Earth Syst Sc, 1083 16(9): 3435-3449. 1084 Rakovec, O., Weerts, A.H., Sumihar, J., Uijlenhoet, R., 2015. Operational aspects of 1085 asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci., 19(6): 2911-2924. 1086 Randrianasolo, A., Thirel, G., Ramos, M.H., Martin, E., 2014. Impact of streamflow data 1087 assimilation and length of the verification period on the quality of short-term ensemble hydrologic forecasts. J. Hydrol., 519: 2676-2691. - 1089 Reed, S., Schaake, J., Zhang, Z., 2007. A distributed hydrologic model and threshold frequency- - based method for flash flood forecasting at ungauged locations. J. Hydrol., 337(3-4): 402- - 1091 420. - Rossa, A. et al., 2011. The COST 731 Action: A review on uncertainty propagation in advanced - hydro-meteorological forecast systems. Atmos. Res., 100(2-3): 150-167. - Rotach, M.W. et al., 2012. Uncertainty propagation for flood forecasting in the Alps: different - views and impacts from MAP D-PHASE. Nat Hazard Earth Sys, 12(8): 2439-2448. - Ryu, D., Crow, W.T., Zhan, X.W., Jackson, T.J., 2009. Correcting Unintended Perturbation - Biases in Hydrologic Data Assimilation. J. Hydrometeorol., 10(3): 734-750. - Sakov, P., Evensen, G., Bertino, L., 2010. Asynchronous data assimilation with the EnKF. Tellus - 1099 A, 62(1): 24-29. - Salamon, P., Feyen, L., 2009. Assessing parameter, precipitation, and predictive uncertainty in a - distributed hydrological model using sequential data assimilation with the particle filter. J. - 1102 Hydrol., 376(3-4): 428-442. - 1103 Schaake, J.C., Hamill, T.M., Buizza, R., Clark, M., 2007. The hydrological ensemble prediction - experiment. Bulletin of the American Meteorological Society, 88(10): 1541-+. - 1105 Seo, D.J., Koren, V., Cajina, N., 2003. Real-time variational assimilation of hydrologic and - hydrometeorological data into operational hydrologic forecasting. J. Hydrometeorol., 4(3): - 1107 627-641. - 1108 Shi, J.J. et al., 2014. Implementation of an aerosol-cloud-microphysics-radiation coupling into - the NASA unified WRF: Simulation results for the 6-7 August 2006 AMMA special - observing period. Quarterly Journal of the Royal Meteorological Society, 140(684): - 1111 2158-2175. - 1112 Shrestha, D.L., Robertson, D.E., Wang, Q.J., Pagano, T.C., Hapuarachchi, H.A.P., 2013. - Evaluation of numerical weather prediction model precipitation forecasts for short-term - streamflow forecasting purpose. Hydrol Earth Syst Sc, 17(5): 1913-1931. - Sorooshian, S., Dracup, J.A., 1980. Stochastic Parameter-Estimation Procedures for Hydrologic - Rainfall-Runoff Models Correlated and Heteroscedastic Error Cases. Water Resources - 1117 Research, 16(2): 430-442. - 1118 Tao, J., Barros, A., 2014a. Coupled prediction of flood response and debris flow initiation during - warm-and cold-season events in the Southern Appalachians, USA. Hydrol Earth Syst Sc, - 1120 18(1): 367-388. - 1121 Tao, J., Barros, A., 2014b. The Integrated Precipitation and Hydrology Experiment. Part I: - 1122 Quality High-Resolution Landscape Attributes Datasets. Report EPL-2013-IPHEX- - H4SE-1, EPL/Duke University (Pub.): 60. - 1124 Tao, J., Barros, A., 2014c. The Integrated Precipitation and Hydrology Experiment. Part II: - 1125 Atmospheric Forcing and Topographic Corrections. Report EPL-2013-IPHEX-H4SE-2, - 1126 EPL/Duke University (Pub.): 80. - Tao, J., Barros, A.P., 2013. Prospects for flash flood forecasting in mountainous regions An - investigation of Tropical Storm Fay in the Southern Appalachians. J. Hydrol., 506: 69-89. - 1129 Taramasso, A.C., Gabellani, S., Parodi, A., 2005. An operational flash-flood forecasting chain - applied to the test cases of the EU project HYDROPTIMET. Nat Hazard Earth Sys, 5(5): - 1131 703-710. - Thielen, J., Bartholmes, J., Ramos, M.H., de Roo, A., 2009. The European Flood Alert System - - Part 1: Concept and development. Hydrol Earth Syst Sc, 13(2): 125-140. - 1134 Vasiloff, S.V. et al., 2007. Improving QPE and very short term QPF: An initiative for a - 1135 community-wide integrated approach. Bulletin of the American Meteorological Society, - 1136 88(12): 1899-1911. - 1137 Verbunt, M., Walser, A., Gurtz, J., Montani, A., Schar, C., 2007. Probabilistic flood forecasting - with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeorol., - 1139 8(4): 897-909. - 1140 Versini, P.A., Berenguer, M., Corral, C., Sempere-Torres, D., 2014. An operational flood - warning system for poorly gauged basins: demonstration in the Guadalhorce basin - 1142 (Spain). Nat Hazards, 71(3): 1355-1378. - Vincendon, B., Ducrocq, V., Nuissier, O., Vie, B., 2014. Real-time hydro-meteorological - ensemble forecasting during the HYMEX SOP1 European Meteorological Society. - 1145 Vrugt, J.A., Gupta, H.V., Nuallain, B.O., 2006. Real-time data assimilation for operational - ensemble streamflow forecasting. J. Hydrometeorol., 7(3): 548-565. - Wanders, N., Karssenberg, D., de Roo, A., de Jong, S.M., Bierkens, M.F.P., 2014. The suitability - of remotely sensed soil moisture for improving operational flood forecasting. Hydrol - Earth Syst Sc, 18(6): 2343-2357. - Welles, E., Sorooshian, S., Carter, G., Olsen, B., 2007. Hydrologic verification A call for action - and collaboration. Bulletin of the American Meteorological Society, 88(4): 503-+. - Werner, M., Cranston, M., Harrison, T., Whitfield, D., Schellekens, J., 2009. Recent - developments in operational flood forecasting in England, Wales and Scotland. Meteorol - 1154 Appl, 16(1): 13-22. - Wilson, A.M., Barros, A.P., 2014. An Investigation of Warm Rainfall Microphysics in the - Southern Appalachians: Orographic Enhancement via Low-Level Seeder-Feeder - Interactions. Journal of the Atmospheric Sciences, 71(5): 1783-1805. - Wilson, A.M., Barros, A.P., 2015. Landform Controls on Low Level Moisture Convergence and - the Diurnal Cycle of Warm Season Orographic Rainfall in Middle Mountains - - Observations and Modeling in the Southern Appalachians. Journal of Hydrology (In - 1161 Review). - Wooten, R.M. et al., 2008. Geologic, geomorphic, and meteorological aspects of debris flows - triggered by Hurricanes Frances and Ivan during September 2004 in the Southern - Appalachian Mountains of Macon County, North Carolina (southeastern USA). - 1165 Landslides, 5(1): 31-44. - 1166 Xie, X.H., Zhang, D.X., 2010. Data assimilation for distributed hydrological catchment modeling - via ensemble Kalman filter. Adv. Water Resour., 33(6): 678-690. - 1168 Xuan, Y., Cluckie, I.D., Wang, Y., 2009. Uncertainty analysis of hydrological ensemble - forecasts in a distributed
model utilising short-range rainfall prediction. Hydrol Earth - 1170 Syst Sc, 13(3): 293-303. - 1171 Yildiz, O., Barros, A.P., 2005. Climate Variability and Hydrologic Extremes-Modeling the - Water and Energy Budgets in the Monongahela River Basin. Climate and Hydrology in - 1173 Mountain Areas. Wiley. - 1174 Yildiz, O., Barros, A.P., 2007. Elucidating vegetation controls on the hydroclimatology of a mid- - latitude basin. J. Hydrol., 333(2-4): 431-448. - 1176 Yildiz, O., Barros, A.P., 2009. Evaluating spatial variability and scale effects on hydrologic - processes in a midsize river basin. Scientific Research and Essays, 4(4): 217-225. - Zaitchik, B.F., Santanello, J.A., Kumar, S.V., Peters-Lidard, C.D., 2013. Representation of Soil - Moisture Feedbacks during Drought in NASA Unified WRF (NU-WRF). J. - 1180 Hydrometeorol., 14(1): 360-367. - Zappa, M. et al., 2010. Propagation of uncertainty from observing systems and NWP into - hydrological models: COST-731 Working Group 2. Atmos. Sci. Lett., 11(2): 83-91. - Zappa, M., Jaun, S., Germann, U., Walser, A., Fundel, F., 2011. Superposition of three sources - of uncertainties in operational flood forecasting chains. Atmos. Res., 100(2-3): 246-262. - Zappa, M. et al., 2008. MAP D-PHASE: real-time demonstration of hydrological ensemble - prediction systems. Atmos. Sci. Lett., 9(2): 80-87. - 21187 Zhang, J. et al., 2014. Initial operating capabilities of quantitative precipitation estimation in the - multi-radar multi-sensor system, 28th Conf. on Hydrology, Amer. Meteor. Soc., Atlanta, - 1189 GA. - 21190 Zhang, S.Q., Zupanski, M., Hou, A.Y., Lin, X., Cheung, S.H., 2013. Assimilation of - Precipitation-Affected Radiances in a Cloud-Resolving WRF Ensemble Data - 1192 Assimilation System. Mon. Weather Rev., 141(2): 754-772. - Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B., Stancalie, G., 2010. Which rainfall spatial - information for flash flood response modelling? A numerical investigation based on data - from the Carpathian range, Romania. J. Hydrol., 394(1-2): 148-161. - Zupanski, D., Zhang, S.Q., Zupanski, M., Hou, A.Y., Cheung, S.H., 2011. A Prototype WRF- - Based Ensemble Data Assimilation System for Dynamically Downscaling Satellite - Precipitation Observations. J. Hydrometeorol., 12(1): 118-134. # **List of Tables** | 1201 | Table 1 – Information about the stream gauges of the 12 forecast basins | |------|--| | 1202 | Table 2 – Data assimilation schemes tested and the associated implementation parameters, i.e. | | 1203 | assimilation frequency (AF) and time window (TW). Three efficiency indices including NSE | | 1204 | (Nash-Sutcliffe efficiency) (Nash and Sutcliffe, 1970), the KGE (Kling-Gupta Efficiency), and | | 1205 | the modified KGE (Gupta et al., 2009; Kling et al., 2012) of the produced hindcast simulation are | | 1206 | shown for each basin. In addition, the error in peak value (EPV, m ³ /s) and the error in peak time | | 1207 | (EPT, in minutes) are also provided. The best NSE and the used DA scheme for each basin are | | 1208 | highlighted. 60 | | 1209 | Table 3 - Perturbation methods and parameters applied in this study | | 1210 | Table 4 – Evaluation metrics of forecast results with 6 hour to 15 hour maximum leading time | | 1211 | using the identified best DA scheme for each basin | | 1212 | | | | | | | | | 1213 | List of Figures | | | | | 1214 | Figure 1 – The operational hydrological forecasts during the IPHEx-IOP were conducted at 12 | | 1215 | small basins that are not limited by dam operation (labeled in panel b)), and are critical | | 1216 | headwater catchments of the Pigeon River Basin (Basin 1-3), the Upper French Broad River | | 1217 | Basin (Basin 4-5), the Upper Broad River Basin (Basin 6-7), the Upper Catawba River Basin | | 1218 | (Basin 9-10) and the upper Yadkin River Basin (Basin 11-12). Green dots represent the | | 1219 | forecasting locations which are collocated with USGS stream gauges. A dense observation | | 1220 | network including rain gauges from NASA, Duke PMM, HADS and ECONet in the Pigeon | | 1221 | River Basin are shown in the panel c). | | 1222 | Figure 2 – The workflow for producing daily forecasts/hindcasts and assessment metrics at Duke | | 1223 | (Barros et al. 2014) | | 1224 | Figure 3 – The left panel shows Nu-WRF nested modeling domains during the IPHEx campaign; | | 1225 | the right panel shows the position of the 3rd domain (the most inner) of NU-WRF, the IPHEx | | 1226 | domain and the IPHEx-IOP domain using air temperature as an example | | 1227 | Figure 4 – IPHEx-IOP Forecast/Hindcast overview (May to June 15, 2014) for Basin 1 to 5 and | | 1228 | Basin 10, the largest basin. Dark blue represents QPE/QPF; black lines represent discharge | | 1229 | observations; green lines are streamflow hindcast with Q3 as rainfall input and other atmospheric | | 1230 | forcing data from Nu-WRF; red lines are streamflow forecast with all the atmospheric forcing | | 1231 | fields from Nu-WRF67 | | 1232 | Figure 5 – Daily rainfall accumulation on May 15, 2014 from ground radar-based QPEs | | 1233 | (StageIV and Q3), satellite QPE (IMERG), QPFs from Nu-WRF operationally used in the | | 1234 | IPHEx-IOP, and the QPFs from Nu-WRF with assimilation of conventional ground-based | | 1235 | observations (DA CNT) and satellite-based data (DA SAT), i.e. GPM GMI and SSMIS | |------|---| | 1236 | precipitation-affected radiance. (Note the scale for QPFs from NU-WRF with DA is different | | 1237 | from others.) | | 1238 | Figure 6 – IPHEx-IOP Forecast/Hindcast results for the largest event over the IPHEx (May 15, | | 1239 | 2014) for all the basins. Dark blue represents QPE (StageIV and Q3) or QPF (Nu-WRF forecast); | | 1240 | black lines represent discharge observations; blue and green lines are streamflow hindcasts with | | 1241 | rainfall input from Q3 (MW) and StageIV (SW), respectively; red and pink lines are streamflow | | 1242 | forecast with all the atmospheric forcing fields from Nu-WRF initialized using hindcast results | | 1243 | from MW and SW, respectively | | 1244 | Figure 7 – Daily rainfall accumulation on May 15, 2014 from the NOAA X-band dual polarized | | 1245 | (NOXP) radar deployed in the Pigeon River Basin. The hybrid data was produced by choosing | | 1246 | the cleanest/lowest elevation angle for each azimuth from multiple elevation angles (from 0.5 to | | 1247 | 8 degrees). Two other gridded NOXP data with elevation angles at 1.8 degree and 2.4 degree | | 1248 | were also used in this study | | 1249 | Figure 8 – Forecast/hindcast results on May 15, 2014 using multiple QPEs (Q3, StageIV, NOXP | | 1250 | data at 1.8 degree and 2.4 degree elevation angles and the hybrid data, and IMERG) and QPF | | 1251 | from Nu-WRF in headwater catchments in the Pigeon River Basin (Basin $1-3$, from left to | | 1252 | right)71 | | 1253 | Figure 9 – Forecast results on May 15, 2014 using the improved NU-WRF QPFs by assimilating | | 1254 | conventional ground-based observations (DA-CNT), and assimilating satellite-based data (DA- | | 1255 | SAT) (GPM GMI and SSMIS precipitation-affected radiance) also for the three headwater | | 1256 | catchments in the Pigeon River Basin (Basin 1 – 3, from left to right) | | 1257 | Figure 10 – Scattering comparison of the original Q3 and the adjusted Q3 data (including | | 1258 | Q3+_All, Q3+_H/L, and Q3+_CdfThr) with observations from four raingauge networks | | 1259 | consisting of Duke PMM gauges, NASA dual-platform, HADS and ECONet. Row a) shows the | | 1260 | comparison for May 15 event, and row b) shows the comparison for data on June 12 (which | | 1261 | resulted in the response on June 13) | | 1262 | Figure 11 – Daily rainfall accumulation on May 15, 2014 from the original Q3 and the adjusted | | 1263 | Q3 data (including Q3+_All, Q3+_H/L, and Q3+_CdfThr). Note the adjustment to Q3 data only | | 1264 | performed in the Pigeon River Basin taking advantage of the high dense rain gauge networks 74 | | 1265 | Figure 12 – Forecast/hindcast results on May 15, 2014 using the original Q3 and the adjusted Q3 | | 1266 | data (Q3+_*) in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). | | 1267 | The grey lines are simulation members using 50 rainfall replicates drawn from normal | | 1268 | distributions within 70% (row a)) and 95% (row b)) confidence interval (CI) of the regression | | 1269 | model, explicitly representing the uncertainty associated with Q3+_All | | 1270 | Figure 13 – Workflow of the hydrological Data Assimilation System (DAS) for the operational | | 1271 | flood forecast | | 1272 | Figure 14 – Hindcast results assimilating discharge observations using three DA scheme, namely | | 1273 | (a) EnKF, (b) AEnKF and (c) EnKS, with assimilation frequency (AF) from 15min, 30min to | | 1274 | 60min, and assimilating time window (TW) from 1hr, 2hr to 3hr. Panel (d) summarizes the three | | 1275 | schemes producing the best results indicating by NSE in Table 2. Only the ensemble members | |------|--| | 1276 | (50) of the best schemes are shown for each basin, i.e. EnKS_TW15min_TW2hr for Basin 1, | | 1277 | EnKS_TW15min_TW1hr for Basin 2, and AEnKF_TW15min_TW2hr for Basin 3. NSEs for the | | 1278 | best performance of DA configuration are marked in the corresponding color in the panel (see | | 1279 | also table 2) | | 1280 | Figure 15 – Forecast results with the best DA scheme identified for each basin (i.e. | | 1281 | EnKS_AF15min_TW2hr for Basin 1, EnKS_AF15min_TW1hr for Basin 2, and | | 1282 | AEnKF_AF15min_TW2hr for Basin 3) with short to longer lead times (6hr to 15hr). The time | | 1283 | when the forecast is issued is marked on the time-axis by the dot
colored corresponding to | | 1284 | streamflow forecast. LDT means lead time | | 1285 | | | 1286 | | Table 1 – Information about the stream gauges of the 12 forecast basins. | Forecast
Basins | Site No. | Station Name | Latitude | Longitude | HUC
Code | Drainage
Area(km ²) | Basin | | |--------------------|----------|--|-----------|------------|-------------|------------------------------------|------------------|--| | 1 | 03460000 | CATALOOCHEE CREEK NEAR
CATALOOCHEE, NC | 35.667500 | -83.073611 | 6010106 | 127.4 | | | | 2 | 03455500 | WEST FORK PIGEON RIVER
ABOVE LAKE LOGAN NR
HAZELWOOD, NC | 35.396111 | -82.937500 | 6010106 | 71.5 | Pigeon | | | 3 | 03456500 | EAST FORK PIGEON RIVER
NEAR CANTON, NC | 35.461667 | -82.869722 | 6010106 | 133.4 | | | | 4 | 03439000 | FRENCH BROAD RIVER AT ROSMAN, NC | 35.143333 | -82.824722 | 6010105 | 175.9 | Upper
French | | | 5 | 03441000 | DAVIDSON RIVER NEAR
BREVARD, NC | 35.273056 | -82.705833 | 6010105 | 104.6 | Broad | | | 6 | 02149000 | COVE CREEK NEAR LAKE
LURE, NC | 35.423333 | -82.111667 | 3050105 | 204.6 | Upper | | | 7 | 02150495 | SECOND BROAD RIVER NR
LOGAN, NC | 35.404444 | -81.872500 | 3050105 | 223.3 | Broad | | | 8 | 02137727 | CATAWBA R NR PLEASANT
GARDENS, NC | 35.685833 | -82.060278 | 3050101 | 326.3 | | | | 9 | 02138500 | LINVILLE RIVER NEAR NEBO,
NC | 35.794722 | -81.89 | 3050101 | 172.8 | Upper
Catawba | | | 10 | 02140991 | JOHNS RIVER AT ARNEYS
STORE, NC | 35.833611 | -81.711944 | 3050101 | 520.6 | | | | 11 | 02111000 | YADKIN RIVER AT
PATTERSON, NC | 35.990833 | -81.558333 | 3040101 | 74.6 | Upper | | | 12 | 02111180 | ELK CREEK AT ELKVILLE, NC | 36.071389 | -81.403056 | 3040101 | 131.8 | Yadkin | | Table 2 – Data assimilation schemes tested and the associated implementation parameters, i.e. assimilation frequency (AF) and time window (TW). Three efficiency indices including NSE (Nash–Sutcliffe efficiency) (Nash and Sutcliffe, 1970), the KGE (Kling-Gupta Efficiency), and the modified KGE (Gupta et al., 2009; Kling et al., 2012) of the produced hindcast simulation are shown for each basin. In addition, the error in peak value (EPV, m³/s) and the error in peak time (EPT, in minutes) are also provided. The best NSE and the used DA scheme for each basin are highlighted. | Scheme | TW | AF | Name | Basin | NSE | KGE1 | KGE2 | EPV | ЕРТ | |--------|---------------------|-------|---------------------|-------|------|------|------|-------|------| | | \setminus | | | B01 | 0.76 | 0.79 | 0.80 | 3.95 | -135 | | | \ / | 15min | EnKF_AF15min | B02 | 0.45 | 0.42 | 0.55 | 33.23 | 75 | | | $ \setminus $ | | | B03 | 0.47 | 0.65 | 0.63 | 5.74 | 195 | | | $ \cdot \rangle /$ | | | B01 | 0.69 | 0.71 | 0.75 | 4.78 | -105 | | EnKF | I X | 30min | EnKF_AF30min | B02 | 0.45 | 0.44 | 0.56 | 29.70 | 90 | | | /\ | | | B03 | 0.41 | 0.50 | 0.60 | 9.14 | -45 | | | / \ | | | B01 | 0.61 | 0.58 | 0.65 | 5.65 | -270 | | | / \ | 1hour | EnKF_AF60min | B02 | 0.34 | 0.34 | 0.50 | 33.92 | 90 | | | / | | | B03 | 0.19 | 0.35 | 0.47 | 12.23 | -270 | | | | | | B01 | 0.71 | 0.65 | 0.75 | 4.09 | 15 | | | | 15min | AEnKF_AF15min_TW1hr | B02 | 0.06 | 0.22 | 0.41 | 30.50 | 75 | | | | | | B03 | 0.93 | 0.94 | 0.95 | -0.88 | 30 | | | | 30min | AEnKF_AF30min_TW1hr | B01 | 0.58 | 0.62 | 0.69 | 5.17 | -15 | | | 1hr | | | B02 | 0.33 | 0.32 | 0.52 | 32.18 | 90 | | | | | | B03 | 0.97 | 0.93 | 0.95 | 0.20 | 0 | | | | 1hour | AEnKF_AF60min_TW1hr | B01 | 0.55 | 0.50 | 0.65 | 6.42 | -75 | | | | | | B02 | 0.38 | 0.39 | 0.55 | 25.56 | 90 | | | | | | B03 | 0.88 | 0.90 | 0.92 | -5.90 | 45 | | | | | AEnKF_AF15min_TW2hr | B01 | 0.79 | 0.70 | 0.81 | 3.76 | -135 | | | | 15min | | B02 | 0.37 | 0.38 | 0.53 | 26.36 | 90 | | | | | | B03 | 0.99 | 0.94 | 0.96 | 1.55 | 0 | | AEnKF | | 30min | AEnKF_AF30min_TW2hr | B01 | 0.72 | 0.75 | 0.83 | -4.19 | -30 | | | 2hr | | | B02 | 0.52 | 0.49 | 0.64 | 28.33 | -150 | | | | | | B03 | 0.94 | 0.92 | 0.95 | -2.33 | 0 | | | | | | B01 | 0.79 | 0.70 | 0.80 | 3.54 | -30 | | | | 1hour | AEnKF_AF60min_TW2hr | B02 | 0.39 | 0.47 | 0.57 | 26.92 | 90 | | | | | | B03 | 0.76 | 0.81 | 0.85 | -1.72 | -15 | | | | | | B01 | 0.68 | 0.58 | 0.71 | 4.99 | -30 | | | | 15min | AEnKF_AF15min_TW3hr | B02 | 0.36 | 0.38 | 0.56 | 23.80 | 90 | | | | | | B03 | 0.98 | 0.94 | 0.96 | 1.73 | 75 | | | 3hr | | | B01 | 0.87 | 0.78 | 0.85 | 3.44 | -45 | | | | 30min | AEnKF_AF30min_TW3hr | B02 | 0.29 | 0.31 | 0.50 | 33.08 | 45 | | | | | | B03 | 0.87 | 0.82 | 0.88 | 3.66 | 45 | | | | 1hour | AEnKF_AF60min_TW3hr | B01 | 0.57 | 0.51 | 0.66 | 6.04 | -135 | | | | 1 | | | | | | | 1 | |------|-----|-------|----------------------|-----|-------|------|------|-------|------| | | | | | B02 | 0.10 | 0.20 | 0.37 | 38.83 | -135 | | | | | | B03 | 0.82 | 0.85 | 0.88 | 0.57 | 0 | | | | | | B01 | 0.89 | 0.91 | 0.93 | 2.27 | -45 | | | | 15min | EnKS_AF15min_TW1hr | B02 | 0.71 | 0.58 | 0.72 | 22.10 | -30 | | | | | | B03 | 0.83 | 0.76 | 0.79 | 5.20 | -15 | | | | | | B01 | 0.76 | 0.74 | 0.81 | 3.72 | -180 | | | 1hr | 30min | EnKS_AF30min_TW1hr | B02 | 0.17 | 0.27 | 0.38 | 39.92 | -165 | | | | | | B03 | 0.88 | 0.80 | 0.84 | 4.67 | 30 | | | | | | B01 | 0.66 | 0.72 | 0.79 | 0.80 | -90 | | | | 1hour | EnKS_AF60min_TW1hr | B02 | -0.01 | 0.13 | 0.32 | 41.47 | 60 | | | | | | B03 | 0.43 | 0.50 | 0.57 | 11.94 | -270 | | | | | | B01 | 0.98 | 0.95 | 0.97 | 1.45 | -15 | | | | 15min | EnKS_AF15min_TW2hr | B02 | 0.67 | 0.80 | 0.77 | 0.92 | 90 | | | 2hr | | | B03 | 0.85 | 0.76 | 0.83 | 7.85 | 15 | | | | 30min | EnKS_AF30min_TW2hr | B01 | 0.83 | 0.70 | 0.79 | 4.45 | 0 | | EnKS | | | | B02 | 0.57 | 0.53 | 0.62 | 26.87 | 45 | | | | | | B03 | 0.78 | 0.74 | 0.81 | 4.18 | -15 | | | | 1hour | EnKS_AF60min_TW2hr | B01 | 0.76 | 0.65 | 0.75 | 5.00 | -90 | | | | | | B02 | 0.49 | 0.45 | 0.58 | 29.58 | 30 | | | | | | B03 | 0.61 | 0.66 | 0.73 | 4.08 | -165 | | | | 15min | n EnKS_AF15min_TW3hr | B01 | 0.91 | 0.84 | 0.89 | 2.81 | -60 | | | | | | B02 | 0.61 | 0.78 | 0.78 | 2.67 | 90 | | | | | | B03 | 0.77 | 0.87 | 0.87 | -4.63 | 135 | | | 3hr | | EnKS_AF30min_TW3hr | B01 | 0.85 | 0.75 | 0.82 | 4.13 | -150 | | | | 30min | | B02 | 0.43 | 0.46 | 0.59 | 23.98 | 90 | | | | | | B03 | 0.79 | 0.84 | 0.84 | 1.09 | 45 | | | | | | B01 | 0.81 | 0.79 | 0.85 | 2.68 | -60 | | | | 1hour | EnKS_AF60min_TW3hr | B02 | 0.15 | 0.32 | 0.43 | 31.36 | 90 | | | | | | B03 | 0.52 | 0.49 | 0.64 | 14.01 | 75 | Table 3 - Perturbation methods and parameters applied in this study. | Fields | Distribution | Perturbing
Approach | Parameters | |--|---|------------------------|---| | NU-WRF QPFs | Log-Normal,
LogN(μ , σ) | Multiplicative | μ=0
σ=0.5 | | SW Radiation | Log-Normal,
LogN(μ , σ) | Multiplicative | μ=0
σ=0.1 | | Other atmospheric forcing (LW Rad., air temp., etc.) | Normal, $N(\mu,\sigma)$ | Additive | μ =0 for all fields.
LW: σ =15
Temp: σ =5
Press: σ =25
SepcHumi: σ =0.8×10 ⁻³
Wind: σ =3 | | Soil Moisture | Normal, $N(\mu,\sigma)$ | Additive | $\mu=0$ $\sigma=0.05 \times \theta_{top}$ | | Saturated Hydraulic conductivity | Normal, $N(\mu,\sigma)$ | Additive | μ=0
σ=10 ⁻⁶ | | Power n | Normal, $N(\mu,\sigma)$ | Additive | μ=0
σ=1.5 | | Discharge observation | Normal, $N(\mu,\sigma)$ | Additive | $\mu=0$ $\sigma=0.1\times Q_{obs}$ | Table 4 – Evaluation metrics of forecast results with 6 hour to 15 hour maximum leading time using the identified best DA scheme for each basin. | Metrics and Max.
Forecasting lead | Metric | 6hr | 9hr | 12hr | 15hr | Forecast
w/o DA | |---------------------------------------|--------|-------|-------|--------|-------|--------------------| | | NSE | 0.28 | 0.53 | 0.75 | 0.43 | -11.26 | | Dogin 01 | KGE1 | 0.5 | 0.53 | 0.77 | 0.41 | -1.29 | | Basin01 (Best DA: EnKS AF15min TW2hr) | KGE2 | 0.5 | 0.56 | 0.72 | 0.52 | -0.79 | | (Best DA. EIRS_AF15IIIII_1 w ziii) | EPV | 1.87 | 5.86 | 3.12 | 6.75 | -14.20 | | | EPT | 240 | -75 | -105 | 45 | 120 | | | NSE | 0.43 | 0.25 | -0.19 | -0.10 | -0.04 | | D : 02 | KGE1 | 0.54 | 0.48 | 0.39 | 0.29 | 0.43 | | Basin02 | KGE2 | 0.61 | 0.54 | 0.28 | 0.28 | 0.49 | | (Best DA: EnKS_AF15min_TW1hr) | EPV | 6.61 | 5.75 | -17.59 | 1.12 | -40.06 | | | EPT | 120 | 120 | 120 | 120 | 120 | | | NSE | 0.87 | 0.78 | 0.72 | 0.51 | -13.81 | | D : 02 | KGE1 | 0.9 | 0.86 | 0.85 | 0.54 | -1.78 | | Basin03 | KGE2 | 0.9 | 0.81 | 0.86 | 0.67 | -0.95 | | (Best DA: AEnKF_AF15min_TW2hr) | EPV | -3.19 | -8.62 | -2.73 | 8.44 | -51.39 | | | EPT | 0 | 75 | 0 | 30 | 75 | Figure 1 – The operational hydrological forecasts during the IPHEx-IOP were conducted at 12 small basins that are not limited by dam operation (labeled in panel b)), and are critical headwater catchments of the Pigeon River Basin (Basin 1-3), the Upper French Broad River Basin (Basin 4-5), the Upper Broad River Basin (Basin 6-7), the Upper Catawba River Basin (Basin 9-10) and the upper Yadkin River Basin (Basin 11-12). Green dots represent the forecasting locations which are collocated with USGS stream gauges. A dense observation network including rain gauges from NASA, Duke PMM, HADS and ECONet in the Pigeon River Basin are shown in the panel c). Figure 2 – The workflow for producing daily forecasts/hindcasts and assessment metrics at Duke (Barros et al. 2014). Figure 3 – The left panel shows Nu-WRF nested modeling domains during the IPHEx campaign; the right panel shows the position of the 3rd domain (the most inner) of NU-WRF, the IPHEx domain and the IPHEx-IOP domain using air temperature as an example. Figure 4 – IPHEx-IOP Forecast/Hindcast overview (May to June 15, 2014) for Basin 1 to 5 and Basin 10, the largest basin. Dark blue represents
QPE/QPF; black lines represent discharge observations; green lines are streamflow hindcast with Q3 as rainfall input and other atmospheric forcing data from Nu-WRF; red lines are streamflow forecast with all the atmospheric forcing fields from Nu-WRF. Figure 5 – Daily rainfall accumulation on May 15, 2014 from ground radar-based QPEs (StageIV and Q3), satellite QPE (IMERG), QPFs from Nu-WRF operationally used in the IPHEx-IOP, and the QPFs from Nu-WRF with assimilation of conventional ground-based observations (DA CNT) and satellite-based data (DA SAT), i.e. GPM GMI and SSMIS precipitation-affected radiance. (Note the scale for QPFs from NU-WRF with DA is different from others.) Figure 6 – IPHEx-IOP Forecast/Hindcast results for the largest event over the IPHEx (May 15, 2014) for all the basins. Dark blue represents QPE (StageIV and Q3) or QPF (Nu-WRF forecast); black lines represent discharge observations; blue and green lines are streamflow hindcasts with rainfall input from Q3 (MW) and StageIV (SW), respectively; red and pink lines are streamflow forecast with all the atmospheric forcing fields from Nu-WRF initialized using hindcast results from MW and SW, respectively. Figure 7 – Daily rainfall accumulation on May 15, 2014 from the NOAA X-band dual polarized (NOXP) radar deployed in the Pigeon River Basin. The hybrid data was produced by choosing the cleanest/lowest elevation angle for each azimuth from multiple elevation angles (from 0.5 to 8 degrees). Two other gridded NOXP data with elevation angles at 1.8 degree and 2.4 degree were also used in this study. Figure 8 – Forecast/hindcast results on May 15, 2014 using multiple QPEs (Q3, StageIV, NOXP data at 1.8 degree and 2.4 degree elevation angles and the hybrid data, and IMERG) and QPF from Nu-WRF in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). Figure 9 – Forecast results on May 15, 2014 using the improved NU-WRF QPFs by assimilating conventional ground-based observations (DA-CNT), and assimilating satellite-based data (DA-SAT) (GPM GMI and SSMIS precipitation-affected radiance) also for the three headwater catchments in the Pigeon River Basin (Basin 1-3, from left to right). Figure 10 – Scattering comparison of the original Q3 and the adjusted Q3 data (including Q3+_All, Q3+_H/L, and Q3+_CdfThr) with observations from four raingauge networks consisting of Duke PMM gauges, NASA dual-platform, HADS and ECONet. Row a) shows the comparison for May 15 event, and row b) shows the comparison for data on June 12 (which resulted in the response on June 13). Figure 11 – Daily rainfall accumulation on May 15, 2014 from the original Q3 and the adjusted Q3 data (including Q3+_All, Q3+_H/L, and Q3+_CdfThr). Note the adjustment to Q3 data only performed in the Pigeon River Basin taking advantage of the high dense rain gauge networks. Figure 12 – Forecast/hindcast results on May 15, 2014 using the original Q3 and the adjusted Q3 data (Q3+_*) in headwater catchments in the Pigeon River Basin (Basin 1 – 3, from left to right). The grey lines are simulation members using 50 rainfall replicates drawn from normal distributions within 70% (row a)) and 95% (row b)) confidence interval (CI) of the regression model, explicitly representing the uncertainty associated with Q3+_All. Figure 13 – Workflow of the hydrological Data Assimilation System (DAS) for the operational flood forecast. Figure 14 – Hindcast results assimilating discharge observations using three DA scheme, namely (a) EnKF, (b) AEnKF and (c) EnKS, with assimilation frequency (AF) from 15min, 30min to 60min, and assimilating time window (TW) from 1hr, 2hr to 3hr. Panel (d) summarizes the three schemes producing the best results indicating by NSE in Table 2. Only the ensemble members (50) of the best schemes are shown for each basin, i.e. EnKS_TW15min_TW2hr for Basin 1, EnKS_TW15min_TW1hr for Basin 2, and AEnKF_TW15min_TW2hr for Basin 3. NSEs for the best performance of DA configuration are marked in the corresponding color in the panel (see also table 2). Figure 15 (continued). Figure 15 – Forecast results with the best DA scheme identified for each basin (i.e. EnKS_AF15min_TW2hr for Basin 1, EnKS_AF15min_TW1hr for Basin 2, and AEnKF_AF15min_TW2hr for Basin 3) with short to longer lead times (6hr to 15hr). The time when the forecast is issued is marked on the time-axis by the dot colored corresponding to streamflow forecast. LDT means lead time.